In order to assess human organ doses for risk estimates under natural and man made radiation exposure conditions, human phantoms have to be used. As an improvement to the mathematical anthropomorphic phantoms, a new family of phantoms is proposed, constructed from computer tomographic (CT) data. A technique is developed which allows any physical phantom to be converted into computer files to be used for several applications. The new human phantoms present advantages towards the location and shape of the organs, in particular the hard bone and bone marrow. The CT phantoms were used to construct three dimensional images of high resolution; some examples are given and their potential is discussed. The use of CT phantoms is also demonstrated to assess accurately the proportion of bone marrow in the skeleton. Finally, the use of CT phantoms for Monte Carlo (MC) calculations of doses resulting from various photon exposures in radiology and radiation protection is discussed.
Calcifications of the umbilical vein and intrahepatic branches of the portal vein developed in a newborn who had an umbilical vein catheter inserted for 11 days postnatally. The calcified intrahepatic portal veins can still be demonstrated sonographically at the age of three years, but these calcifications were no longer detectable radiologically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.