We present a photodissociation experiment on H+2 with ultrashort laser pulses ( >/=130 fs) at peak intensities of =1.5x10(14) W/cm(2). Since in an ion beam setup H+2 is produced in a discharge source spatially separated from the light interaction zone interference with neutral H2 can be excluded in the interpretation. As the beam setup allows a high energy resolution of photofragments, effects predicted by the light induced potential theory can be tested in detail. The one-photon trapping effect was detected and the angular distributions of fragments from single vibrational levels were measured. Fragment energy spectra deviate strongly from those obtained by experiments on H2.
Measurements and calculations of the absolute carrier-envelope-phase (CEP) effects in the photodissociation of the simplest molecule, H2(+), with a 4.5-fs Ti:sapphire laser pulse at intensities up to (4±2)×10(14) W/cm2 are presented. Localization of the electron with respect to the two nuclei (during the dissociation process) is controlled via the CEP of the ultrashort laser pulses. In contrast to previous CEP-dependent experiments with neutral molecules, the dissociation of the molecular ions is not preceded by a photoionization process, which strongly influences the CEP dependence. Kinematically complete data are obtained by time- and position-resolved coincidence detection. The phase dependence is determined by a single-shot phase measurement correlated to the detection of the dissociation fragments. The experimental results show quantitative agreement with ab initio 3D time-dependent Schrödinger equation calculations that include nuclear vibration and rotation.
Fragmentation of H2+ and D2+ in ion beams has been studied with short intense laser pulses (100 fs, I=5x10(13)-1x10(15) W/cm2) and by a high-resolution two-dimensional velocity imaging technique. In the Coulomb explosion channel, at intensities just above the threshold for this process, we observe a clear structure in the kinetic energy spectra not previously found or predicted. The peaks can be attributed to single vibrational levels. We interpret this observation as a dissociative allocation of the electron to a proton followed by enhanced ionization at a well-defined "critical" overstretched internuclear distance. When using longer pulses we observe three separate Coulomb explosion velocity groups corresponding to critical distances of about 8, 11, and 15 a.u.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.