In both controlled environment and the field, six QTLs for ascochyta blight resistance were identified in three regions of the genome of an intraspecific population of chickpea using the IDS and AUDPC disease scoring systems. One QTL-region was detected from both environments, whereas the other two regions were detected from each environment. All the QTL-regions were significantly associated with ascochyta blight resistance using either of the disease scoring systems. The QTLs were verified by multiple interval mapping, and a two-QTL genetic model with considerable epistasis was established for both environments. The major QTLs generally showed additive gene action, as well as dominance inter-locus interaction in the multiple genetic model. All the QTLs were mapped near a RGA marker. The major QTLs were located on LG III, which was mapped with five different types of RGA markers. A CLRR-RGA marker and a STMS marker flanked QTL 6 for controlled environment resistance at 0.06 and 0.04 cM, respectively. Other STMS markers flanked QTL 1 for field resistance at a 5.6 cM interval. After validation, these flanking markers may be used in marker-assisted selection to breed for elite chickpea cultivars with durable resistance to ascochyta blight. The tight linkage of RGA markers to the major QTL on LG III will allow map-based cloning of the underlying resistance genes.
An intraspecific linkage map of the chickpea genome based on STMS as anchor markers, was established using an F(2) population of chickpea cultivars with contrasting disease reactions to Ascochyta rabiei (Pass.) Lab. At a LOD-score of 2.0 and a maximum recombination distance of 20 cM, 51 out of 54 chickpea-STMS markers (94.4%), three ISSR markers (100%) and 12 RGA markers (57.1%) were mapped into eight linkage groups. The chickpea-derived STMS markers were distributed throughout the genome, while the RGA markers clustered with the ISSR markers on linkage groups LG I, II and III. The intraspecific linkage map spanned 534.5 cM with an average interval of 8.1 cM between markers. Sixteen markers (19.5%) were unlinked, while l1 chickpea-STMS markers (20.4%) deviated significantly ( P < 0.05) from the expected Mendelian segregation ratio and segregated in favor of the maternal alleles. However, ten of the distorted chickpea-STMS markers were mapped and clustered mostly on LG VII, suggesting the association of these loci in the preferential transmission of the maternal germ line. Preliminary comparative mapping revealed that chickpea may have evolved from Cicer reticulatum, possibly via inversion of DNA sequences and minor chromosomal translocation. At least three linkage groups that spanned a total of approximately 79.2 cM were conserved in the speciation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.