A method for solving certain nonlinear ordinary and partial differential equations is developed. The central idea is to study monodromy preserving deformations of linear ordinary differential equations with regular and irregular singular points. The connections with isospectral deformations and with classical and recent work on monodromy preserving deformations are discussed. Specific new results include the reduction of the general initial value problem for the Painleve equations of the second type and a special case of the third type to a system of linear singular integral equations. Several classes of solutions are discussed, and in particular the general expression for rational solutions for the second Painleve equation family is shown to be -ln(A + /A__\ where Δ + and Δ_ are determinants. We also demonstrate that each of these equations is an exactly integrable Hamiltonian system.* The basic ideas presented here are applicable to a broad class of ordinary and partial differential equations additional results will be presented in a sequence of future papers.
A MInverse spectral theory is used to prescribe and study equations for the slow modulations of N-phase wave trains for the Korteweg-de Vries (KdV) equation. An invariant representation of the modulational equations is deduced. This representation depends upon certain differentials on a Riemann surface. When evaluated near m on the surface, the invariant representation reduces to averaged conservations laws; when evaluated near the branch points, the representation shows that the simple eigenvalues provide Riemann invariants for the modulational equations. Integrals of the invariant representation over certain cycles on the Riemann surface yield "conservation of waves." Explicit formulas for the characteristic speeds of the modulational equations are derived. These results generalize known results for a single-phase traveling wave, and indicate that complete integrability can induce enough structure into the modulational equations to diagonalize (in the sense of Riemann invariants) their first-order terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.