The Younger Dryas stadial, a cold event spanning 12,800 to 11,500 years ago, during the last deglaciation, is thought to coincide with the last major glacial re-advance in the tropical Andes. This interpretation relies mainly on cosmic-ray exposure dating of glacial deposits. Recent studies, however, have established new production rates for cosmogenic (10)Be and (3)He, which make it necessary to update all chronologies in this region and revise our understanding of cryospheric responses to climate variability. Here we present a new (10)Be moraine chronology in Colombia showing that glaciers in the northern tropical Andes expanded to a larger extent during the Antarctic cold reversal (14,500 to 12,900 years ago) than during the Younger Dryas. On the basis of a homogenized chronology of all (10)Be and (3)He moraine ages across the tropical Andes, we show that this behaviour was common to the northern and southern tropical Andes. Transient simulations with a coupled global climate model suggest that the common glacier behaviour was the result of Atlantic meridional overturning circulation variability superimposed on a deglacial increase in the atmospheric carbon dioxide concentration. During the Antarctic cold reversal, glaciers advanced primarily in response to cold sea surface temperatures over much of the Southern Hemisphere. During the Younger Dryas, however, northern tropical Andes glaciers retreated owing to abrupt regional warming in response to reduced precipitation and land-surface feedbacks triggered by a weakened Atlantic meridional overturning circulation. Conversely, glacier retreat during the Younger Dryas in the southern tropical Andes occurred as a result of progressive warming, probably influenced by an increase in atmospheric carbon dioxide. Considered with evidence from mid-latitude Andean glaciers, our results argue for a common glacier response to cold conditions in the Antarctic cold reversal exceeding that of the Younger Dryas.
Geophysical analysis of lacustrine sediment stratigraphy at Lago de Tota (Tota), Boyaca, Colombia provided evidence for significant lake-level fluctuations through the late Quaternary and produced a record that potentially spans the last 60 ka. CHIRP data collected in 2015 from this large, high-elevation lake in the Eastern Cordillera of the northern hemisphere Colombian Andes reveal a series of off-lap and on-lap sequences in the upper ~20 m of the lake's sediment column that indicate large amplitude changes in lake-level. Because 14 C dated sediment cores are only available for the upper 3 m of the sediment column, known Holocene sedimentation rates were extrapolated in order to assign preliminary ages to the off-lap and on-lap sequence boundaries below 3 m depth. These data suggest that lake-levels at Tota were lower than present during Marine Isotope Stage (MIS) 4 between 60 and 57 ka, relatively high during MIS 3 between 57 and 29 ka, fell to their lowest levels during MIS 2 between 29 and 14 ka, and gradually rose to the modern high-stand through a series of transgressions during MIS 1 and the Holocene from ~14 ka to the present. These fluctuations are broadly consistent with trends observed in other lake-level reconstructions from the northern (in phase) and southern (out of phase) hemisphere Andes, possibly supporting the idea that millennial-to-orbital-scale South American hydroclimate variability is linked to shifts in the mean latitude of the Intertropical Convergence Zone (ITCZ) due to the influence of insolation-and ocean circulation-driven hemispheric temperature gradients during glacial/stadial and interglacial/interstadial events.Although additional geochronological data will be needed to better resolve the timing of the Tota lake-level changes and their relationships with other records, these preliminary results from Tota, as well as the presence of a thick (>300 m) sedimentary archive, indicate that this site has significant potential to produce high-resolution, quantitative, paleo-hydroclimate data spanning much of the last 1 million years. Because geophysical surveys and long paleoclimate records from northern hemisphere South America are exceedingly rare, these data provide critical insight into regional hydroclimate trends through the Late Quaternary. Additional work, such as the collection of sediment cores spanning the depth interval represented in the CHIRP data, is required, however, in order to place firmer chronological constraints on the hypothesized timing of lake-level fluctuations at Tota and to investigate their paleo-hydroclimatic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.