have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas ͑Rϭ3.9 m, aϭ0.6 m͒, which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection ͑NBI͒ has produced plasmas with a fusion triple product of 8ϫ10 18 keV m Ϫ3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum stored energy has reached 0.22 MJ, which corresponds to ͗͘ϭ0.7%, with neither unexpected confinement deterioration nor visible magnetohydrodynamics ͑MHD͒ instabilities. Energy confinement times, reaching 0.17 s at the maximum, have shown a trend similar to the present scaling law derived from the existing medium sized helical devices, but enhanced by 50%. The knowledge on transport, MHD, divertor, and long pulse operation, etc., are now rapidly increasing, which implies the successful progress of physics experiments on helical currentless-toroidal plasmas.
Reversed-shear Alfvén eigenmodes were observed for the first time in a helical plasma having negative q₀'' (the curvature of the safety factor q at the zero shear layer). The frequency is swept downward and upward sequentially via the time variation in the maximum of q. The eigenmodes calculated by ideal MHD theory are consistent with the experimental data. The frequency sweeping is mainly determined by the effects of energetic ions and the bulk pressure gradient. Coupling of reversed-shear Alfvén eigenmodes with energetic ion driven geodesic acoustic modes generates a multitude of frequency-sweeping modes.
Remarkable progress in the physical parameters of net-current free plasmas has been made in the Large Helical Device (LHD) since the last Fusion Energy Conference in Chengdu, 2006 (O.Motojima et al., Nucl. Fusion 47 (2007. The beta value reached 5 % and a high beta state beyond 4.5% from the diamagnetic measurement has been maintained for longer than 100 times the energy confinement time. The density and temperature regimes also have been extended. The central density has exceeded 1.0×10 21 m -3 due to the formation of an Internal Diffusion Barrier (IDB). The ion temperature has reached 6.8 keV at the density of 2×10 19 m -3 , which is associated with the suppression of ion heat conduction loss. Although these parameters have been obtained in separated discharges, each fusion-reactor relevant parameter has elucidated the potential of net-current free heliotron plasmas. Diversified studies in recent LHD experiments are reviewed in this paper.
The mission of the National Spherical Torus Experiment (NSTX) is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of high harmonic fast-waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l i ∼ 0.4 with strong shaping (κ ∼ 2.7, δ ∼ 0.8) with β N approaching the with-wall β-limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f NI ∼ 71%. Instabilities driven by super-Alfvénic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvénic. Linear toroidal Alfvén eigenmode thresholds and appreciable fast ion loss during multi-mode bursts are measured and these results are compared with theory. The impact of n > 1 error fields on stability is an important result for ITER. Resistive wall mode/resonant field amplification feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are results of lithium coating experiments, momentum confinement studies, scrape-off layer width scaling, demonstration of divertor heat load mitigation in strongly shaped plasmas and coupling of coaxial helicity injection plasmas to ohmic heating ramp-up. These results advance the ST towards next step fusion energy devices such as NHTX and ST-CTF.
Abstract. The International Stellarator Confinement Database (ISCDB) is a joint effort of the helical device community. It is publicly available at http://www.ipp.mpg.de/ISS and http://iscdb.nifs.ac.jp. The validity of physics models is investigated employing ISCDB data. Bayesian model comparison shows differences in the confinement scaling of data subgroups. Theory-based assessment of pure neoclassical transport regimes, however, indicates scalability which is supported by experimental results in specific W7-AS scenarios. Therefore, neoclassical simulations are employed for predictive purposes, accounting for effects due to power deposition, plasma profiles, and the ambipolar radial electric field. Neoclassical case studies for W7-X are presented as examples for the neoclassical predictions to be considered as an upper limit of plasma performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.