We extend the existing ordinary differential equations modeling neural electrical activity to include the memory effect of electromagnetic induction through magnetic flux, used to describe time varying electromagnetic field. Through the multi-scale expansion in the semi-discrete approximation, we show that the neural network dynamical equations can be governed by the complex Ginzburg-Landau equation. The analytical and numerical envelop soliton of this equation are reported. The results obtained suggest the possibility of collective information processing and sharing in the nervous system, operating in both the spatial and temporal domains in the form of localized modulated waves. The effects of memristive synaptic electromagnetic induction coupling and perturbation on the modulated action potential dynamics examined. Large electromagnetic induction coupling strength may contribute to signal block as the amplitude of modulated waves are observed to decrease. This could help in the development of a chemical brain anaesthesia for some brain pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.