The biophysical radiation track simulation model PARTRAC was improved by implementing new interaction cross sections for protons in water. Computer-simulated tracks of energy deposition events from protons and their secondary electrons were superimposed on a higher-order DNA target model describing the spatial coordinates of the whole genome inside a human cell. Induction of DNA double-strand breaks was simulated for proton irradiation with LET values between 1.6 and 70 keV/microm and various reference radiation qualities. The yield of DSBs after proton irradiation was found to rise continuously with increasing LET up to about 20 DSBs per Gbp and Gy, corresponding to an RBE up to 2.2. About half of this increase resulted from a higher yield of DSB clusters associated with small fragments below 10 kbp. Exclusion of experimentally unresolved multiple DSBs reduced the maximum DSB yield by 30% and shifted it to an LET of about 40 keV/microm. Simulated fragment size distributions deviated significantly from random breakage distributions over the whole size range after irradiation with protons with an LET above 10 keV/microm. Determination of DSB yields using equations derived for random breakage resulted in an underestimation by up to 20%. The inclusion of background fragments had only a minor influence on the distribution of the DNA fragments induced by radiation. Despite limited numerical agreement, the simulations reproduced the trends in proton-induced DNA DSBs and fragment induction found in recent experiments.
A realistic DNA target model has been developed and implemented in the biophysical simulation code PARTRAC. It describes five levels of the B-DNA structure (nucleotides, DNA helices, nucleosomes, chromatin fiber structure and chromatin fiber loops) on an atomic level for the whole genome inside a mammalian cell nucleus. The model is capable of describing regular solenoidal, crossed-linker or zigzag structures as well as repeating stochastic arrangements of nucleosomes in the chromatin fiber. Electron tracks resulting from monoenergetic electrons with energies up to 100 keV and from 220 kVp X rays, starting at random positions in the cell, were superimposed on four DNA target models with different chromatin fiber structures. The yields of SSBs, DSBs and short single- and double-stranded DNA fragments were determined from spatial coincidences with strand atoms. Two parameters of the model-the energy necessary to create an SSB and the distance between two breaks that would be scored as a DSB-were adapted to equate simulated and measured strand break yields after X irradiation of human fibroblast cells. The integral fractions of short single- and double-stranded fragments were rather similar for all condensed chromatin fiber structures; they agreed with experimental data for DNA fragments below 2 kbp. The simulated fragment size distributions in the range from 0.1 to 1.5 kbp reflected the fiber structure irrespective of strandedness or electron energy. The distributions using a stochastic arrangement of nucleosomes in the chromatin fiber were found to be in better accordance with experimental data than those obtained with regular fiber structures.
Ionizing radiation is considered a non-threshold carcinogen. However, quantifying the risk of the more commonly encountered low and/or protracted radiation exposures remains problematic and subject to uncertainty. Therefore, a major challenge lies in providing a sound mechanistic understanding of low-dose radiation carcinogenesis. This Perspective article considers whether differences exist between the effects mediated by high- and low-dose radiation exposure and how this affects the assessment of low-dose cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.