In Rhodopseudomonas capsulata the enzymes of the Entner-Doudoroff pathway and the Embden-Meyerhof pathway have been examined. Fructose-grown cells contained inducible activities of phosphoenolpyruvate-fructosephospho-transferase and 1-phosphofructokinase and only low levels of fructokinase and 6-phosphofructokinase. Although fructose-grown cells contained, in addition, all the enzymes of the Entner-Doudoroff pathway together with fructose-1,6-diphosphatase and phosphoglucose isomerase, the Entner-Doudoroff pathway was not operative in fructose catabolism and served only the degradation of glucose. The functional separation of glucose and fructose catabolism via the Entner-Doudoroff and a modified Embden-Meyerhof pathway, respectively, was confirmed by different approaches: 1. Radiorespirometric experiments with glucose and fructose labelled in positions 1, 2, 3, 3+4 and 6 have been carried out. The pattern of 14CO2-evolution from position-labelled glucose was characteristic for the Entner-Doudoroff pathway, that from position-labelled fructose for the Embden-Meyerhof pathway. 2. In the presence of arsenite up to 50% of glucose- and fructose-carbon was excreted as pyruvate. Using 1-14C-glucose, 86% of the pyruvate was labelled in the carboxyl group, whereas using 1-14C-fructose only 19% of the pyruvate was labelled in the carboxyl group. 3. A glucose-6-phosphate dehydrogenase-deficient mutant was isolated which lacked a functional Entner-Doudoroff pathway but which was unaltered in its ability to grow on fructose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.