Our earlier studies in mouse have shown that the cystatin-related epididymal spermatogenic (CRES) protein is highly expressed in elongating spermatids in the testis and is present in mouse sperm acrosomes, suggesting specific roles in sperm function, fertilization, or both. However, whether the human CRES gene is similar to that of the mouse and is expressed in germ cells has not yet been determined. Therefore, the present study was undertaken to characterize the human ortholog of mouse CRES: Northern blot and in situ hybridization experiments showed that CRES is highly expressed in the human testis, specifically within clusters of round spermatids. Furthermore, reverse transcription-polymerase chain reaction detected CRES mRNA in the epididymis. Western blot analysis of protein lysates prepared from human testis and ejaculated spermatozoa showed a predominant 19-kDa protein and a minor 14-kDa protein. However, in contrast to the acrosomal localization of CRES protein in mouse spermatozoa, indirect immunofluorescence of human spermatozoa treated with methanol/acetic acid using anti-human CRES antibodies revealed that CRES was strictly localized to the equatorial segment. Furthermore, the same staining was observed in both capacitated and acrosome-reacted spermatozoa. To determine whether CRES was associated with the plasma membrane, live spermatozoa were incubated with CRES antibody after capacitation and acrosome reaction. Only acrosome-reacted spermatozoa showed a weak but specific equatorial staining. Taken together, these studies show that CRES protein is present in the sperm equatorial segment and becomes accessible to the extracellular environment during fertilization.
ABSTRACT:The Cres gene defines a new subgroup in the family 2 cystatins of cysteine protease inhibitors. However, unlike typical cystatins, CRES does not inhibit cysteine proteases but rather inhibits the serine protease prohormone convertase 2, an enzyme with roles in proprotein processing in the neuroendocrine system. Cres is expressed in the gonadotropes and colocalizes with LHb, suggesting a role in the regulation of gonadotrope secretion. Our present studies were carried out to examine the regulation of Cres mRNA and protein expression by GnRH and steroid hormones, thus providing clues regarding its role in gonadotropes. Castration profoundly reduced Cres mRNA, while replacement with estradiol (E 2 ), testosterone (T), or dihydrotestosterone (DHT) further decreased Cres, suggesting negative regulation by GnRH or steroid hormones. The administration of Antide, a GnRH antagonist, resulted in a 3-fold increase in Cres mRNA, supporting a negative regulation by GnRH. Because all hormonal manipulations in vivo resulted in alterations in steroid hormones, organ culture was used to assess the effects of GnRH independent of steroids. Mouse pituitaries cultured in the absence of GnRH or steroids showed high Cres mRNA levels, while DHT or E 2 resulted in decreases of 25% and 68%, respectively. However, an 85% decrease in Cres mRNA occurred following the administration of GnRH, demonstrating that GnRH, and to a lesser degree E 2 , negatively regulate Cres mRNA in gonadotropes. Examination of CRES protein by immunohistochemistry showed that levels were profoundly reduced following castration, while DHT and in part T, but not E 2 , restored CRES levels. Castrated mice treated with Antide showed little effect. However, castrated mice treated with Antide + DHT showed a dramatic recovery of CRES, suggesting that androgens act directly at the level of the gonadotrope to regulate CRES protein. Together, our studies suggest that Cres mRNA and protein are low at peak gonadotrope secretory activity, possibly as a means to allow proprotein processing events to occur that are integral to gonadotrope function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.