The Space Telescope Imaging Spectrograph (STIS) instrument was installed on the Hubble Space Telescope (HST) during the second servicing mission, in 1997 February. Four bands cover the wavelength range of 115-1000 nm, with spectral resolving powers between 26 and 200,000. Camera modes are used for target acquisition and deep imaging. Correction for HST's spherical aberration and astigmatism is included. The 115-170 nm range is covered by a CsI MAMA (Multianode Microchannel Array) detector and the 165-310 nm range by a Cs 2 Te MAMA, each with a format of pixels, while the 305-555 and 550-1000 nm ranges are 2048 # 2048 covered by a single CCD with a format of pixels. The multiplexing advantage of using these two-1024 # 1024 dimensional detectors compared with the pixel detectors of the first-generation spectrographs is 1 or 2 1 # 512 orders of magnitude, depending on the mode used. The relationship between the scientific goals and the instrument specifications and design is discussed.
The Space Telescope Imaging Spectrograph (STIS) was successfully installed into the Hubble Space Telescope (HST) in 1997 February, during the second HST servicing mission, STS-82. STIS is a versatile spectrograph, covering the 115-1000 nm wavelength range in a variety of spectroscopic and imaging modes that take advantage of the angular resolution, unobstructed wavelength coverage, and dark sky offered by the HST. In the months since launch, a number of performance tests and calibrations have been carried out and are continuing. These tests demonstrate that the instrument is performing very well. We present here a synopsis of the results to date.
ABSTRACT. The in-orbit performance of the Goddard High-Resolution Spectrograph onboard the Hubble Space Telescope (HST) is presented. This report covers the pre-COSTAR period, when instrument performance was limited by the effects of spherical aberration of the telescope's primary mirror. The digicon detectors provide a linear response to count rates spanning over six orders of magnitude, ranging from the normal background flux of 0.01 counts diode -1 s -1 to values larger than 10 4 counts diode -1 s -1 . Scattered light from the first-order gratings is small and can be removed by standard background-subtraction techniques. Scattered light in the echelle mode is more complex in origin, but it also can be accurately removed. Data have been obtained over a wavelength range from below 1100 Â to 3300 Â, at spectral resolutions as high asR = \/A\ = 90,000. The wavelength scale is influenced by spectrograph temperature, outgassing of the optical bench, and interaction of the magnetic field within the detector with the Earth's magnetic field. Models of these effects lead to a default wavelength scale with an accuracy better than 1 diode, corresponding to 3 km s -1 in the echelle mode. With care, the wavelength scale can be determined to an accuracy of 0.2 diodes. Calibration of the instrument sensitivity functions is tied into the HST flux calibration through observations of spectrophotometric standard stars. The measurements of vignetting and the echelle blaze function provide relative photometric precision to about 5% or better. The effects of fixed-pattern noise have been investigated, and techniques have been devised for recognizing and removing it from the data. The ultimate signal-to-noise ratio achievable with the spectrograph is essentially limited only by counting statistics, and values approaching 1000:1 have been obtained.
The Multiband Imaging Photometer for Spitzer (MIPS) provides long wavelength capability for the mission, in imaging bands at 24, 70, and 160µm and measurements of spectral energy distributions between 52 and 100µm at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The Si:As BIB 24µm array has excellent photometric properties, and measurements with rms relative errors of 1% or better can be obtained. The two longer wavelength arrays use Ge:Ga detectors with poor photometric stability. However, the use of 1.) a scan mirror to modulate the signals rapidly on these arrays, 2.) a system of on-board stimulators used for a relative calibration approximately every two minutes, and 3.) specialized reduction software result in good photometry with these arrays also, with rms relative errors of less than 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.