Hot Jupiters (HJs) are giant planets with orbital periods of the order of a few days with semimajor axis within ∼0.1 au. Several theories have been invoked in order to explain the origin of this type of planets, one of them being the high-eccentricity migration. This migration can occur through different high-eccentricity mechanisms. Our investigation focused on six different kinds of high-eccentricity mechanisms, namely, direct dispersion, coplanar, Kozai-Lidov, secular chaos, E1 and E2 mechanisms. We investigated the effciency of these mechanisms for the production of HJ candidates in multi-planet systems initially tightly-packed in the semimajor axis, considering a large set of numerical simulations of the exact equations of motion in the context of the N-body problem. In particular, we analyzed the sensitivity of our results to the initial number of planets, the initial semimajor axis of the innermost planetary orbit, the initial conffguration of planetary masses, and to the inclusion of general relativity effects. We found that the E1 mechanism is the most effcient in producing HJ candidates both in simulations with and without the contribution of general relativity, followed by the Kozai-Lidov and E2 mechanisms. Our results also revealed that, except for the initial equal planetary mass conffguration, the E1 mechanism was notably effcient in the other initial planetary mass conffgurations considered in this work. Finally, we investigated the production of HJ candidates with prograde, retrograde, and alternating orbits. According to our statistical analysis, the Kozai-Lidov mechanism has the highest probability of significantly exciting the orbital inclinations of the HJ candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.