BackgroundThe equine periodontium provides tooth support and lifelong tooth eruption on a remarkable scale. These functions require continuous tissue remodeling. It is assumed that multipotent mesenchymal stromal cells (MSC) reside in the periodontal ligament (PDL) and play a crucial role in regulating physiological periodontal tissue regeneration. The aim of this study was to isolate and characterize equine periodontal MSC.Tissue samples were obtained from four healthy horses. Primary cell populations were har-vested and cultured from the gingiva, from three horizontal levels of the PDL (apical, midtooth and subgingival) and for comparison purposes from the subcutis (masseteric region). Colony-forming cells were grown on uncoated culture dishes and typical in vitro characteristics of non-human MSC, i.e. self-renewal capacity, population doubling time, expression of stemness markers and trilineage differentiation were analyzed.ResultsColony-forming cell populations from all locations showed expression of the stemness markers CD90 and CD105. In vitro self-renewal capacity was demonstrated by colony-forming unit fibroblast (CFU-F) assays. CFU-efficiency was highest in cell populations from the apical and from the mid-tooth PDL. Population doubling time was highest in subcutaneous cells. All investigated cell populations possessed trilineage differentiation potential into osteogenic, adipogenic and chondrogenic lineages.ConclusionsDue to the demonstrated in vitro characteristics cells were referred to as equine subcutaneous MSC (eSc-MSC), equine gingival MSC (eG-MSC) and equine periodontal MSC (eP-MSC). According to different PDL levels, eP-MSC were further specified as eP-MSC from the apical PDL (eP-MSCap), eP-MSC from the mid-tooth PDL (eP-MSCm) and eP-MSC from the subgingival PDL (eP-MSCsg). Considering current concepts of cell-based regenerative therapies in horses, eP-MSC might be promising candidates for future clinical applications in equine orthopedic and periodontal diseases.
The porcine glottis differs from the human glottis in its cranial and caudal vocal folds (CraF, CauF). The fibre apparatus of these folds was studied histomorphometrically in adult minipigs. For object definition and quantification, the colour-selection tools of the Adobe-Photoshop program were used. Another key feature was the subdivision of the cross-sections of the folds into proportional subunits. This allowed a statistical analysis irrespective of differences in thickness of the folds. Both folds had a distinct, dense subepithelial layer equivalent to the basement membrane zone in humans. The subsequent, loose layer was interpreted - in principle - as being equivalent to Reinke's space of the human vocal fold. The next two layers were not clearly separated. Due to this, the concept of a true vocal ligament did not appear applicable to neither CauF nor CraF. Instead, the body-cover model was emphasized by our findings. The missing vocalis muscle in the CraF is substituted by large collagen fibre bundles in a proportional depth corresponding to the position of the muscle of the CauF. The distribution of elastic fibres made the CraF rather than the CauF more similar to the human vocal fold. We suggest that these data are useful for those wishing to use the porcine glottis as a model for studying oscillatory properties during phonation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.