On 31 August a new eruption began from the same fissure and is still ongoing at the time of writing. After 4 September the movement associated with the dyke was minor, suggesting an approximate equilibrium between inflow of magma into the dyke and magma flowing out of it feeding the eruption. Minor eruptions may have occurred under Vatnajškull; shallow ice depressions marked by circular crevasses (ice cauldrons) were discovered in the period 27/08-07/09, indicating leakage of magma or magmatic heat to the glacier causing basal melting ( Fig. 1 and 2b). On 5 September, aircraft radar profiling showed that the ice surface in the centre of the B ‡r!arbunga caldera had subsided 16 m relative to the surroundings, resulting in a 0.32±0.08 km 3 subsidence bowl ( can be compared to a 1 day interferogram over the ice surface spanning 27 -28 August (Fig. 1), that has maximum line-of-sight (LOS) increase of 57 cm, indicating 55-70 cm of subsidence, during 24 hours. From 24 August to 6 September 16 M≥5 earthquakes occurred on the caldera boundary.Over 22000 earthquakes were automatically detected 16/08-06/09 2014, 5000 of which have been manually checked. Four thousand of these have been relatively relocated, defining the dyke segments. Ground deformation in areas outside the Vatnajškull ice cap, and on nunataks within the ice cap, is well mapped by a combination of InSAR, continuously recording GPS sites, and campaign GPS measurements. The GPS observations and analysis give the temporal evolution of the three-dimensional displacements used in the modelling (Fig. 1). Interferometric analysis of synthetic aperture radar images from the COSMO-SkyMed, RADARSAT-2 and TerraSAR-X satellites was used to form 11 interferograms showing LOS change spanning different time intervals (Supplementary Fig. 2). The analysis of seismic and geodetic data is described in Methods.Initial modelling of the dyke, with no a priori constraints on position, strike or dip, show the deformation data require the dyke to be approximately vertical and line up with the seismicity (Extended Data item 4). We therefore fixed the dip to be vertical and the lateral position of the dyke to coincide with the earthquake locations.We modelled the dyke as a series of rectangular patches and estimated the opening and slip on each patch ( Fig. 3a; see Supplementary Figures 3-4 for slip and standard deviations of opening). We used a Markov-chain Monte Carlo approach to estimate 7 the multivariate probability distribution for all model parameters (Methods) on each day 16/08-06/09 2014 (Fig. 2d). The results suggest that most of the magma injected into the dyke is shallower than the seismicity, which mostly spans the depth range from 5 to 8 km below sea level (see Fig. 2c and Methods). While magma may extend to depths greater than 9 km near the centre of the ice cap, towards the edge of the ice cap where constraints from InSAR and GPS are much better, significant opening is all shallower than 5 km (Fig. 3a). The total volume intruded into the dyke by 28 August was 0.48-0...
Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.
S U M M A R YIceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr −1 ) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion. Kinematic models of the horizontal plate spreading signal indicate a slightly elevated rate of spreading in the Northern Volcanic Zone (NVZ) (23 ± 2 mm yr −1 ), while the rates at the other plate boundary segments agree fairly well with the predicted rate of plate spreading (∼20 mm yr −1 ) across Iceland. The horizontal ISNET velocities across north Iceland therefore indicate that the excessive spreading rate (>30 mm yr −1 ) observed by GPS in 1987-1992 following the 1975-1984 Krafla rifting episode was significantly slower during 1993-2004. We model the vertical velocities using glacial isostatic adjustment (GIA) due to the recent thinning of the largest glaciers in Iceland. A layered earth model with a 10-km thick elastic layer, underlain by a 30-km thick viscoelastic layer with viscosity 1 × 10 20 Pa s, over a half-space with viscosity ∼1 × 10 19 Pa s can explain the broad area of uplift in central and southeastern Iceland. A wide area of significant residual uplift (up to 8 mm yr −1 ) is evident in north Iceland after we subtract the rebound signal from the observed rates, whereas the Reykjanes Peninsula and the Western Volcanic Zone (WVZ) appear to be subsiding at a rate of 4-8 mm yr −1 . We observe a coherent pattern of small but significant residual horizontal motion (up to 3 mm yr −1 ) away from Vatnajökull and the smaller glaciers that is most likely caused by glacial rebound. Our study demonstrates that the velocity field over a large part of Iceland is affected by deglaciation and that this effect needs to be considered when interpreting deformation data to monitor subglacial volcanoes in Iceland.
Subduction of the Cocos plate and collision of the Cocos Ridge have profound effects on the kinematics of the western Caribbean, including crustal shortening, segmentation of the overriding plate, and tectonic escape of the Central American fore arc (CAFA). Tectonic models of the Panama Region (PR) have ranged from a rigid block to a deforming plate boundary zone. Recent expansion of GPS networks in Panama, Costa Rica, and Colombia makes it possible to constrain the kinematics of the PR. We present an improved kinematic block model for the western Caribbean, using this improved GPS network to test a suite of tectonic models describing the kinematics of this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.