Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow maritime cumuli.
Measurements in marine stratocumulus over the northeast Pacific help scientists unravel the mysteries of this important cloud regime.T he stratocumulus-topped boundary layer (hereafter the STBL), which prevails in the subtropics in regions where the underlying ocean is much colder than the overlying atmosphere, is thought to be an important component of the climate system. Perhaps most striking is its impact on the radiative balance at the top of the atmosphere. The seasonally averaged net cloud radiative forcing from the STBL has been estimated to be as large as 70 W nr 2 (Stephens and Greenwald 1991), more than an order of magnitude larger than the radiative forcing associated with a doubling of atmospheric C0 2 . This means that even rather subtle sensitivities of the STBL to changes in the properties of the atmospheric aero-
The vertical evolution of microphysics in trade-wind cumuli (Cu) observed from the NCAR C-130 research aircraft during one flight of the RICO (Rain in Cumulus Over the Ocean) study is analyzed. Conditional sampling of > 200 Cu traversed on this flight is used to chose Cu for which the aircraft penetrated single and growing Cu turrets about 250-m below cloud top where maximum LWC is often found and where radar has often observed initial stages of precipitation. The vertical evolution of the sampled set of Cu was assumed to follow Lagrangian behavior. The entrainment rate, entrained parcel scales, mixing mechanisms, and effects on the droplet size distribution are measured and evaluated. A parcel model is applied over the 1100-m maximum Cu height of the traverses to determine the relationship between the observed large number of small droplets and the fewer ultra-giant sea-salt nuclei (UGN) in order to assess the role of these nuclei in evolving the size spectrum and in causing a growing "drizzle tail". New insight on these topics is obtained by using the PVM (Particle Volume Monitor) probe to measure incloud microphysics with 10-cm resolution.The results include the following: Entrainment causes primarily dilution of the drops without significant size changes, thus either extreme inhomogeneous mixing or more likely homogeneous mixing resulting from mixing with cool and humid entrained air take place. The entrained parcels are surprisingly small following lognormal behavior and decaying rapidly upon entering the Cu, as a result super-adiabatic drops are not evident. The entrained parcels are consistent with the Bragg-scattering "mantle echo" often observed by radar in small Cu. The FSSP (Forward Scattering Spectrometer Probe) droplet spectra are nearly constant with height. These "self-preserving" spectra are a result of an approximate balance between dilution by entrainment of droplets originating at cloud base, droplet activation on entrained CCN (cloud condensation nuclei), and detrainment and coalescence losses. Sea-salt nuclei follow Woodcock's wind dependence, and are shown with the parcel model to play an important role in forming the observed drizzle that increases with cloud height. Accretion is the dominant coalescence mechanism near cloud top in these Cu.
Aircraft flights through stratocumulus clouds (Sc) during the Dynamics and Chemistry of Marine Stratocumulus II (DYCOMS-II) study off the California coast found narrow in-cloud regions with less liquid water content (LWC) and cooler temperatures than average background values. The regions are named cloud holes and are assumed to be a result of water evaporated by the entrainment of dryer air from above the Sc. While such features have been noted previously, this study provided a unique opportunity to investigate in much greater detail the nature of the holes, as well as their relationship to the entrainment rate, because high-speed temperature and LWC probes with maximum spatial resolution of 10 cm were flown together for the first time. Nine long-duration flights were made through mostly unbroken Sc for which conditional sampling was used to identify the location and size of the holes. The holes are concentrated near cloud top, their average width near cloud top is about 5 m, their relative length distribution is nearly constant for all flights, and they can penetrate hundreds of meters deep into the Sc before being lost by mixing. Entrainment velocities at cloud top are estimated from measurements of fluxes of reduced LWC and vapor mixing ratios in holes, the fraction of cloud area covered by holes, and the total water jump between cloud top and the free atmosphere. Rates as large as 10 mm s−1 are found for nocturnal flights, and these rates are about 3 times larger than for daytime flight segments. The rates correlate best with the size of the buoyancy jump above the Sc; the present conditional-sampling approach for measuring the rates gives larger rates than the “flux jump” rates determined by others for the same flights by a factor of about 2. The stability criterion for all Sc predicts thinning and breakup of the Sc, which does not occur. The minimal amount of cloud-top evaporative cooling caused by entrainment contributes little to the top-down convection dominated by radiative cooling during nocturnal flights; however, evaporative cooling caused by the mixing of holes as they subduct with the large-scale eddy circulation in the Sc may contribute, but with an as-of-yet unknown amount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.