In this work, we carried out the study of electrical characteristics with two-dimensional numerical analysis by using the Aided Design (TCAD Silvaco) software for CdS/CuInGaSe2 (CIGS) thin solar cells. Their structure is composed of a thin CIGS solar cell in the configuration: ZnO(200 nm)/CdS(50 nm)/CIGS (350 nm)/Mo. Then ZnO is used for conductive oxide contacted transparent front of the cell. For rear contact, the molybdenum (Mo) is used. The layer of the CdS window and the shape of the CIGS absorber is the n-p semiconductor heterojunction. The performance of the cell was evaluated by applying the defects created in the grain joints of polycrystalline CdS and CIGS material and CIGS/CdS interface in the model, and the physical parameters used in the TCAD simulations have been calibrated to reproduce experimental data. The J–V characteristics are simulated under AM1.5 illumination conditions. The conversion efficiency (η) 20.10% has been reached, and the other characteristic parameters have been simulated: the open-circuit voltage (Voc) is 0.68 V, the circuit-current density (Jsc) is equal to 36.91 mA/cm2, and the form factor (FF) is 0.80. The simulation results showed that the molar fraction x of the CIGS layer has an optimal value around 0.31 corresponding to a gap energy of 1.16 eV, this result is in very good agreement with that found experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.