This paper presents a model for predicting crises in small businesses using early‐warning signals. It summarises the results of two separate studies carried out in Finland (with 72 per cent response) and the UK (26 per cent) on the decision process of corporate analysts (Finland) and bank managers (UK) in predicting the failure of small and medium‐sized enterprises (SMEs). Both studies consist of seven main headings and over 40 sub‐headings of possible factors leading to failure. Weighted averages were used for both studies to show the importance of these factors. There are significant similarities in the results of the two studies. Management incompetence was regarded as the most important factor, followed by deficiencies in the accounting system and attitude towards customers. However, low accounting staff morale was considered a very important factor in Finland but not in the UK. Unlike Finland, the UK results emphasised the importance of accounting systems and internal control. These two studies differ from previous studies as managerial auditing elements like the importance of internal control departments (UK evidence) and budgetary control systems were included. Similarities in the results of these surveys conducted under two separate EU environments imply that it would be interesting and beneficial to extend these studies to other member states.
The taxonomical structure of microbial community sample is highly habitat-specific, making it possible for source tracking niches where samples are originated. Current methods face challenges when the number of samples and niches are magnitudes more than current in use, under which circumstances they are unable to accurately source track samples in a timely manner, rendering them difficult in knowledge discovery from sub-million heterogeneous samples. Here, we introduce a deep learning method based on Ontology-aware Neural Network approach, ONN4MST (https://github.com/HUST-NingKang-Lab/ONN4MST), which takes into consideration the ontology structure of niches and the relationship of samples from these ontologically-organized niches. ONN4MST's superiority in accuracy, speed and robustness have been proven, for example with an accuracy of 0.99 and AUC of 0.97 in a microbial source tracking experiment that 125,823 samples and 114 niches were involved. Moreover, ONN4MST has been utilized on several source tracking applications, showing that it could provide highly-interpretable results from samples with previously less-studied niches, detect microbial contaminants, and identify similar samples from ontologically-remote niches, with high fidelity.
With the rapid increase of the microbiome samples and sequencing data, more and more knowledge about microbial communities has been gained. However, there is still much more to learn about microbial communities, including billions of novel species and genes, as well as countless spatiotemporal dynamic patterns within the microbial communities, which together form the microbial dark matter. In this work, we summarized the dark matter in microbiome research and reviewed current data mining methods, especially artificial intelligence (AI) methods, for different types of knowledge discovery from microbial dark matter. We also provided case studies on using AI methods for microbiome data mining and knowledge discovery. In summary, we view microbial dark matter not as a problem to be solved but as an opportunity for AI methods to explore, with the goal of advancing our understanding of microbial communities, as well as developing better solutions to global concerns about human health and the environment.
The taxonomic structure of microbial community sample is highly habitat-specific, making source tracking possible, allowing identification of the niches where samples originate. However, current methods face challenges when source tracking is scaled up. Here, we introduce a deep learning method based on the Ontology-aware Neural Network approach, ONN4MST, for large-scale source tracking. ONN4MST outperformed other methods with near-optimal accuracy when source tracking among 125,823 samples from 114 niches. ONN4MST also has a broad spectrum of applications. Overall, this study represents the first model-based method for source tracking among sub-million microbial community samples from hundreds of niches, with superior speed, accuracy, and interpretability. ONN4MST is available at https://github.com/HUST-NingKang-Lab/ONN4MST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.