In this work we have investigated how the dynamics of poly(vinyl methyl ether), PVME, changes by blending with deuterated polystyrene. The experimental techniques used were dielectric spectroscopy, quasielastic neutron scattering, and 13 C nuclear magnetic resonance. By means of these techniques, the dynamics of the poly(vinyl methyl ether) units in the blends can be selectively investigated in a huge time range (10 1 -10 -11 s). Two different blend compositions have been investigated. The main relaxation processes observed in this range are the secondary -process and the segmental R-relaxation. It turns out that the -relaxation is not affected by blending. The data analysis procedure followed by us in the case of the R-process is based on the assumption that the dynamics of the PVME segments in the blends is a superposition of dynamical processes with the same shape as that in pure PVME, but with the relaxation times distributed due to the presence of concentration fluctuations. From this analysis we found that, in the blends, and in pure PVME as well, the results obtained by means of the different techniques can consistently be described with the same set of parameters. Moreover, the temperature dependence of the distribution of relaxation times in each blend composition can be accounted for by a single, temperature-independent, Gaussian distribution of the Vogel-Fulcher temperature, T 0, the average and the variance of the distribution increasing as the PVME concentration decreases. Our results suggest that a significant number of PVME segments in the blends move faster than in pure PVME. Furthermore, our results strongly indicate that each polymer component of the blend exhibits very different R-relaxation rates, i.e., different "glass transitions". Several implications of these results concerning the usually accepted ideas of polymer blend dynamics are outlined.
The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 microm (PM10) and less than 2.5 microm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007.
A detailed investigation on the nature of the relaxation processes occurring in a typical room temperature ionic liquid (RTIL), namely, 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF(6)]), is reported. The study was conducted using both elastic and inelastic neutron scattering over a wide temperature range from 10 to 400 K, accessing the dynamic features of both the liquid and glassy amorphous states. In this study, the inelastic fixed energy scan technique has been applied for the first time to this class of materials. Using this technique, the existence of two relaxation processes below the glass transition and a further diffusive process occurring above the glass-liquid transition are observed. The low temperature processes are associated with methyl group rotation and butyl chain relaxation in the glassy state and have been modeled in terms of two Debye-like, Arrhenius activated processes. The high temperature process has been modeled in terms of a Kohlraush-Williams-Watts relaxation, with a distinct Vogel-Fulcher-Tamman temperature dependence. These results provide novel information that will be useful in rationalizing the observed structural and dynamical behavior of RTILs in the amorphous state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.