Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
The Imaging UltraViolet Spectrograph (IUVS) instrument of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has acquired data on Mars for more than one Martian year. During this time, beginning with March 2015, hundreds of stellar occultations have been observed, in 12 dedicated occultation campaigns, executed on average every 2 to 3 months. The occultations cover the latitudes from 80°S to 75°N and the full range longitude and local times with relatively sparse sampling. From these measurements we retrieve CO2, O2, and O3 number densities as well as temperature profiles in the altitude range from 20 to 160 km, covering 8 orders of magnitude in pressure from ∼2 × 101 to ∼4 × 10−7 Pa. These data constrain the composition and thermal structure of the atmosphere. The O2 mixing ratios retrieved during this study show a high variability from 1.5 × 10−3 to 6 × 10−3; however, the mean value seems to be constant with solar longitude. We detect ozone between 20 and 60 km. In many profiles there is a well‐defined peak between 30 and 40 km with a maximum density of 1–2 ×109 cm−3. Examination of the vertical temperature profiles reveals substantial disagreement with models, with observed temperatures both warmer and colder than predicted. Examination of the altitude profiles of density perturbations and their variation with longitude shows structured atmospheric perturbations at altitudes above 100 km that are likely nonmigrating tides. These perturbations are dominated by zonal wave numbers 2 and 3 with amplitudes greater than 45%.
The evolution and escape of the martian atmosphere and the planet's water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet's origin and lasted ∼500 Myr. Because of the high EUV flux of the young Sun and Mars' low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO 2 atmosphere of a few tens to a few hundred mbar around ∼4-4.3 Gyr ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.