The effect of par-baking and refrigerator storage on the quality of cake was investigated. Quality evaluation of rebaked cakes was performed by using physical, chemical and instrumental texture profile analysis. Cakes were par-baked for 15, 20 and 25 min at 175°C and then they were stored at refrigerator temperature (4°C) for 30, 60 and 90 days, wrapped with two polyethylene bags. After storage, par-baked cakes were rebaked at 175°C and were subjected to analysis. Par-baking and intermediate storage time had a significant effect on baking loss, crumb moisture content, colour, symmetry index and textural properties of cake. The increase in the par-baking time led to a decrease in the baking loss and an increase in the moisture content of cake. Specific volume, moisture content, L colour value and symmetry index significantly decreased with increasing intermediate storage time, while baking loss significantly increased. However, regarding the crumb hardness, cohesiveness, springiness, gumminess and chewiness, the results indicated that the best result was obtained when cakes were baked for 15 min at the par-baking stage. Overall, the cakes became firmer, less cohesive and less dry crumb as the intermediate storage time increased, whereas springiness increased.
The effects of frozen storage and initial baking time of par-baked cake on baking loss, volume, moisture, colour and textural properties of cake obtained after thawing and rebaking were investigated. Cakes, parbaked at 175°C for 15, 20 and 25 min, were stored at )18°C for 3, 6 and 9 months. After storage, parbaked cakes were thawed and rebaked at 175°C for 10, 15 and 20 min. Baking loss, moisture content, L and +b colour values, firmness, gumminess and chewiness of the resulting full-baked cakes were significantly affected by both par-baking and frozen storage time, while specific volume, cohesiveness, springiness and resilience values were significantly affected by frozen storage time. The increase in the time of frozen storage of the par-baked cake leads to a decrease in the quality of the rebaked cake, namely an increase of baking loss and cake crumb firmness, and a loss in the moisture content and specific volume. Moisture of cake crumb, L and +b colour values, firmness, gumminess and chewiness significantly increased as the par-baking time increased. However, regarding baking loss, specific volume, moisture content and textural properties, 3-month intermediate storage at )18°C and 20-min initial baking time gave the best result among the cakes produced by using the two-step baking procedure.
In this study, wheat grain and wheat spike with 12%, 14% and 16% moisture content were stored at 10, 20 and 30°C for 0, 3, 6 and 9 months. After storage, wheat samples were investigated for hectolitre weight, gluten content, Zeleny sedimentation volume, enzyme activity, acidity, phytic acid and L colour value. Storage of wheat at different storage forms (spike and grain) and storage conditions showed considerable changes in grain quality. In general, the storage period of 3 months positively affected wheat quality. However, hectolitre weight, gluten, Zeleny sedimentation, enzyme activity, acidity and colour of wheat got worse at storage periods beyond 3 months. Hectolitre weight, wet and dry gluten, Zeleny sedimentation, phytic acid content and L Colour value of wheat stored in both spike and grain form significantly decreased during storage. However, the increase in grain moisture content, storage time and temperature resulted in significant increase in total titratable acidity and falling number values of wheat. Falling Number and phytic acid values of wheat stored in spike form were generally lower than wheat stored in grain form. Storage in spike form had a positive effect on especially wet gluten content of wheat stored at non-optimal storage conditions such as high grain moisture content and high temperature. Wet gluten of wheat stored in spike form was higher than that of wheat stored grain form after storage at 30°C for 6 and 9 months. Wheat stored in spike form is more resistant than wheat stored in grain form against adverse storage conditions such as high moisture content and temperature and longer storage time.Comparison of functional characteristics of wheat M. M. Karaog lu et al.
In this study, white pan breads part-baked 10, 15, and 20 min with and without added calcium propionate were stored at 20 C (room temperature) for 3, 5, and 7 days and at 4°C (refrigerator temperature) for 7, 14, and 21 days. After storage, the baking time of part-baked breads was completed to the baking time of control breads (25 min). Total aerobic mesophylic bacteria (TAMB), coliform bacteria, yeast and mold, and Bacillus spore counts of breads were determined before and after the second baking. While TAMB, yeast and mold counts were 8-log CFU/g in dough, it was measured as 6 and 2-log CFU/g before and after the rebaking process, respectively. Microorganism counts of the partbaked breads without Ca-propionate stored at room temperature increased in significant amounts. However, the second baking process after storage contributed to the re-freshness of breads and decreased the microorganism counts. The levels of water activity (a w ) for breads with and without ca-propionate stored at different temperatures and time profiles approximately ranged from 0.92 to 0.89 after the rebaking process and did not significantly affect the microorganism counts. However, addition of calcium propionate in the bread formulation significantly decreased TAMB, coliform bacteria, Bacillus spore, and yeast and mold counts, depending on decrease of pH levels. It was found that the microbiological quality of the rebaking bread with Ca-propionate after part-baking for 10 and 15 mins and storage at both room and refrigerator temperature was much higher than that of the other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.