The addition of carbon nanotubes (CNTs) to polymeric matrices or master batches has the potential to provide composites with novel properties. However, composites with a uniform dispersion of CNTs have proved to be difficult to manufacture, especially at an industrial scale. This paper reports on processing methods that overcome problems related to the control and reproducibility of dispersions. By using a high pressure homogenizer and a three-roll calendaring mill in combination, CNT reinforced epoxies were fabricated by mould casting with a well dispersed nanofiller content from 0.1 to 2 wt%. The influence of the nano-carbon reinforcements on toughness and electrical properties of the CNT/epoxies was studied. A substantial increase of all mechanical properties already appeared at the lowest CNT content of 0.1 wt%, but further raising the nanofiller concentration only led to moderate further changes. The most significant enhancement was obtained for fracture toughness, reaching up to 82%. The low percolation thresholds were confirmed by electrical conductivity measurements on the same composites yielding a threshold value of only about 0.01 wt%. As corroborated by a thorough microscopic analysis of the composites, mechanical and electrical enhancement points to the formation of an interconnected network of agglomerated CNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.