in Wiley InterScience (www.interscience.wiley.com).The rich phase behavior of granular beds of bidisperse hard spherical particles in a rotating horizontal drum is studied by Discrete Element Method (DEM) simulations. Several flow regimes and various forms of radial segregation, as well as mixing, are observed by systematically varying the operational parameters of the drum, i.e. fill level and angular velocity, over a wide range. Steady states after several dozen revolutions are summarized in two bed behavior diagrams, showing strong correlations between flow regime and segregation pattern. An entropy method quantifies the overall degree of mixing, while density and velocity plots are used to analyze the local properties of the granular bed. The percolation mechanism may provide a qualitative explanation for the distinct segregation processes, and for the transient mixing in nonradially segregated beds. Initially blockwise segregated beds are found to mix before radial segregation sets in. High fill fractions ([65%) show the most intense segregation.
The kinetics of cellulose hydrolysis by commercially available Cellubrix were described mathematically, with Avicel and wheat straw as substrates. It was demonstrated that hydrolysis could be described by three reactions: direct glucose formation and indirect glucose formation via cellobiose. Hydrolysis did not involve any soluble oligomers apart from low amounts of cellobiose. Phenomena included in the mathematical model were substrate limitation, adsorption of enzyme onto substrate, glucose inhibition, temperature dependency of reaction rates, and thermal enzyme inactivation. In addition, substrate heterogeneity was described by a recalcitrance constant. Model parameters refer to both enzyme characteristics and substrate-specific characteristics.Quantitative model development was carried out on the basis of Avicel hydrolysis. In order to describe wheat straw hydrolysis, wheat straw specific parameter values were measured. Updating the pertinent parameters for wheat straw yielded a satisfactory description of wheat straw hydrolysis, thus underlining the generic potential of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.