Local numbers of ground beetle species of heathland appeared to be significantly associated with size of total area, whereas such relationships were not found for the total number of ground beetle species and eurytopic ground beetle species. Presence of species with low chances of immigration was highly associated with area. This is accordance with the "area per se" hypothesis for islands as far as extinction rates are concerned. The habitat diversity hypothesis and the random sampling hypothesis are of less importance for explaining this phenomenon. The importance of dispersal for presence and survival in fragmented habitats could be demonstrated. This result supports the founding hypothesis, under which founding of new populations is considered the main effect of dispersal. The frequency of heathland species with low powers of dispersal in habitats smaller than 10 ha was 76% lower on average than in areas larger than 100 ha. For heathland species with high powers of dispersal this frequency was only 22% lower on average. The period of isolation of the habitats studied, 26-113 years, appeared to be too long to persist for many populations of heathland species with low powers of dispersal.
SummaryTo test the founding hypothesis of Den Boer the relationship between size of area, degree and time of isolation and presence of ground beetle species was more closely studied.During 1990, 20 isolated heath areas each with a different size and situated in or very near the province of Drenthe (The Netherlands) ground beetles were sampled. With the help of lists from literature the ecological amplitude and dispersal ability of the ground beetles were estimated.Comparison of heath species with different dispersal abilities showed that species with low powers of dispersal were almost absent from small and isolated fragments of heath.The chance to survive for populations of species typical of heath habitat is strongly influenced by size of habitat.A decline of the number of species with low powers of dispersal is apparent in areas which are smaller than about 75 ha. The numbers of heath species with high powers of dispersal only decrease in habitats smaller than about 8 to 25 ha.
Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores' fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T ? 5°C was carried out in climate chambers. At T ? 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.
Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores' fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T ? 5°C was carried out in climate chambers. At T ? 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.