It is shown that the theoretical predictions and experimental observations of toroidicity-induced AlfvCn eigenmodes (TAE's) are now in good agreement, with particularly detailed agreement in the mode frequencies. Calculations of the driving and damping rates predict the importance of continuum damping for low toroidal mode numbers and this is confirmed experimentally. However, theoretical calculations in finite+?, shaped discharges predict the existence of other global AlfvCn modes, in particular the ellipticity-induced AlfvCn eigenmode (EAE) and a new mode, the beta-induced Alfvtn eigenmode (BAE). The BAE mode is calculated to be in or below the same frequency range as the TAE mode and may contribute to the experimental observations at high fl. Experimental evidence and complementary analyses are presented confirming the presence of the EAE mode at higher frequencies.
ABSTRACT. Toroidicity induced AlfvCn eigenmodes (TAE) are observed in the DIII-D tokamak when energetic beam ions (-75 keV) are used to destabilize the mode. Measurements of the neutron emission indicate that up to 70% of the injected power is lost during strong TAE activity. Measurements of the poloidal distribution of fast ion losses suggest that the losses are greatest near the vessel midplane. Fast ion losses in discharges with combined fishbones and TAE bursts are 1.5 to 2 times greater than losses in fishbone discharges without TAE activity. The scaling of fast ion losses with MHD mode amplitude exhibits no threshold in the mode amplitude, suggesting that mode particle pumping is the dominant loss mechanism.
After many years of fusion research, the conditions needed for a D–T fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. For the first time the unique phenomena present in a D–T plasma are now being studied in a laboratory plasma. The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≊2.8 MW m−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni(0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP [Nucl. Fusion 34, 1247 (1994)] simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.
Intense fast-ion populations created by neutral-beam injection into a tokamak can destabilize toroidicity-induced AlfvCn eigenmodes (TAE modes) or internal kink modes. Experimentally, these modes stabilize when fast ions are ejected from the plasma, producing a cycle of relaxation oscillations about the marginal stability point. A pair of coupled differential equations describes this cycle. This simple theoretical formalism successfully describes the cycles observed during
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.