The theory of image formation is formulated in terms of the coherence function in the object plane, the diffraction distribution function of the image-forming system and a function describing the structure of the object. There results a four-fold integral involving these functions, and the complex conjugate functions of the latter two. This integral is evaluated in terms of the Fourier transforms of the coherence function, the diffraction distribution function and its complex conjugate. In fact, these transforms are respectively the distribution of intensity in an ‘effective source’, and the complex transmission of the optical system— they are the data initially known and are generally of simple form. A generalized ‘transmission factor’ is found which reduces to the known results in the simple cases of perfect coherence and complete incoherence. The procedure may be varied in a manner more suited to non-periodic objects. The theory is applied to study
inter alia
the influence of the method of illumination on the images of simple periodic structures and of an isolated line.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.