Background and purpose: The p38 kinase regulates the release of proinflammatory cytokines including tumour-necrosis factor-a (TNFa) and is regarded as a potential therapeutic target in rheumatoid arthritis (RA). Using the novel p38 inhibitor Org 48762-0, we investigated the therapeutic potential of p38 inhibition and compared this to anti-mouse (m)TNFa antibody treatment in murine collagen-induced arthritis (CIA). Experimental approach: Pharmacological profiles of Org 48762-0 were characterized in kinase assays, cellular assays and in lipopolysaccharide (LPS)-induced inflammation in mice. The effects of Org 48762-0 and of mTNFa-neutralization on established arthritis were examined in murine CIA. Key results: Org 48762-0 potently inhibited p38a kinase with a high degree of kinase selectivity. In cellular assays, Org 48762-0 reduced LPS-induced TNFa release. Oral administration of Org 48762-0 in mice showed drug-like pharmacokinetic properties and inhibited LPS-induced cytokine production. These pharmacological characteristics of Org 48762-0 prompted a comparison of therapeutic efficacy with mTNFa-neutralization in CIA. Org 48762-0 and anti-mTNFa antibody treatment equally inhibited development of arthritis when evaluated macroscopically. Radiological analyses revealed protection against bone damage for both treatments, although statistical difference was reached with Org 48762-0 treatment only. Further, micro-computed tomographical and histopathological analyses confirmed the protective effects of Org 48762-0 on joint damage. Conclusions and implications: Pharmacological targeting of p38 kinase provided good protection against joint tissue damage in CIA. In our experiments, neutralization of mTNFa produced less prominent suppression of bone damage. Our data suggest a therapeutic potential for selective and potent p38 inhibitors in RA.
The increased PMNL count is probably a compensatory response to PMNL priming. The increased rate of superoxide release from primed PMNL may contribute to oxidative stress in early pregnancy.
Collagen-induced arthritis (CIA) is a chronic inflammatory disease bearing all the hallmarks of rheumatoid arthritis, e.g. polyarthritis, synovitis, and subsequent cartilage/bone erosions. One feature of the disease contributing to joint damage is synovial hyperplasia. The factors responsible for the hyperplasia are unknown; however, an imbalance between rates of cell proliferation and cell death (apoptosis) has been suggested. To evaluate the role of a major pathway of cell death – Fas (CD95)/FasL – in the pathogenesis of CIA, DBA/1J mice with a mutation of the Fas gene (lpr) were generated. The susceptibility of the mutant DBA-lpr/lpr mice to arthritis induced by collagen type II was evaluated. Contrary to expectations, the DBA-lpr/lpr mice developed significantly milder disease than the control littermates. The incidence of disease was also significantly lower in the lpr/lpr mice than in the controls (40% versus 81%; P < 0.05). However DBA-lpr/lpr mice mounted a robust immune response to collagen, and the expression of local proinflammatory cytokines such as, e.g., tumor necrosis factor α (TNF-α) and IL-6 were increased at the onset of disease. Since the contribution of synovial fibroblasts to inflammation and joint destruction is crucial, the potential activating effect of Fas on mouse fibroblast cell line NIH3T3 was investigated. On treatment with anti-Fas in vitro, the cell death of NIH3T3 fibroblasts was reduced and the expression of proinflammatory cytokines TNF-α and IL-6 was increased. These findings suggest that impairment of immune tolerance by increased T-cell reactivity does not lead to enhanced susceptibility to CIA and point to a role of Fas in joint destruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.