Acute renal failure is an abrupt decrease in renal function. Interleukin (IL)-10 inhibits ischemic and cisplatin-induced acute renal failure. We aimed to determine whether IL-20 affects renal tubular epithelial cells and is associated with acute renal failure. We analyzed the expression of IL-20 and its receptor (R) in the kidneys of rats with HgCl(2)-induced acute renal failure. Reverse transcription-PCR showed upregulated IL-20, and its receptors and immunohistochemical staining showed strongly expressed IL-20 protein in proximal tubular epithelial cells. We analyzed human proximal tubular epithelial (HK-2) cells, which expressed both IL-20 and its receptors. IL-20 specifically induced mitochondria-dependent apoptosis by activating caspase 9 in HK-2 cells. IL-20 also activated c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2, the downstream signals implicated in the apoptosis of HK-2 cells. Furthermore, IL-20 upregulated the transcripts of transforming growth factor (TGF)-beta1, a critical mediator of renal injury. In hypoxic HK-2 cells, IL-20 and IL-22R1 transcripts increased, and IL-20 upregulated IL-1 beta transcripts. In vivo study further demonstrated that anti-IL-20 antibody reduced the expression of TGF-beta1 and IL-1 beta and the number of damaged tubular cells in the kidneys of rats with acute renal failure. We concluded that IL-20 may be involved in the injury of renal epithelial cells in acute renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.