Small perturbations and strong impurity exhaust capability associated with the small grassy ELMs render the grassy-ELM regime a suitable candidate for achieving steady-state H-mode operation with a radiative divertor, especially in a metal-wall device, such as the Experimental Advanced Superconducting Tokamak (EAST). As the degradation of pedestal performance with excessive divertor impurity seeding or accumulation tends to be accompanied with significantly increased radiation near the divertor X point, feedback control of the absolute extreme ultraviolet (AXUV) radiation near the X point has been employed to maintain the confinement property in EAST. However, the absolute value of the AXUV radiation at the outer target varies with plasma conditions as during the divertor detachment process. Thus, a new feedback-control scheme has been recently developed and applied to grassy-ELM H-mode plasmas in EAST to achieve stationary partial detachment while maintaining good global energy confinement with H 98,y2 >1. In this scheme, electron temperatures (T et) measured by divertor Langmuir probes are used to identify the onset of detachment, and then the plasma control system (PCS) switches to the feedback control of one channel of AXUV radiation near the X point, where a steep gradient in the radiation profile is present. The feedback is performed through pulse-width-modulated duty cycle of a piezo valve to seed impurities with mixed gas (50% Ne and 50% D2) from the outer target plate near the strike point in the upper tungsten monoblock divertor. T et near the strike point is maintained in the range of 5–8 eV, and peak surface temperature on the outer target plate (T IR,peak) is suppressed and maintained at ∼180 °C, based on infrared camera measurements. The plasma stored energy maintains nearly constant over the entire feedback-control period. It thus offers a highly promising plasma control scenario suitable for long-pulse high-performance H-mode operation in EAST, which is potentially applicable to future steady-state fusion reactors as an integrated solution for the control of both ELM-induced transient and steady-state divertor heat loads while maintaining good core confinement.
Full suppression of type-I edge localized modes (ELMs) using n = 4 resonant magnetic perturbations (RMPs) as planned for ITER has been demonstrated for the first time (n is the toroidal mode number of the applied RMP). This is achieved in EAST plasmas with low input torque and tungsten divertor, and the target plasma for these experiments in EAST is chosen to be relevant to the ITER Q = 10 operational scenario, thus also addressing significant scenario issues for ITER. In these experiments the lowest neutral beam injection (NBI) input torque is around T NBI ∼ 0.44 Nm, which extrapolates to around 14 Nm in ITER (compared to a total torque input of 35 Nm when 33 MW of NBI are used for heating). The q 95 is around 3.6 and normalized plasma beta β N ∼ 1.5–1.8, similar to that in the ITER Q = 10 scenario. Suppression windows in both q 95 and plasma density are observed; in addition, lower plasma rotation is found to be favourabe to access ELM suppression. ELM suppression is maintained with line averaged density up to 60%n GW (Greenwald density limit) by feedforward gas fuelling after suppression is achieved. It is interesting to note that in addition to an upper density, a low density threshold for ELM suppression of 40%n GW is also observed. In these conditions energy confinement does not significantly drop (<10%) during ELM suppression when compared to the ELMy H-mode conditions, which is much better than previous results using low n (n = 1 and 2) RMPs in higher q 95 regimes. In addition, the core plasma tungsten concentration is clearly reduced during ELM suppression demonstrating an effective impurity exhaust. MHD response modelling using the MARS-F code shows that edge magnetic field stochasticity has a peak at q 95 ∼ 3.65 for the odd parity configuration, which is consistent to the observed suppression window around 3.6–3.75. These results expand the physical understanding of ELM suppression and demonstrate the effectiveness of n = 4 RMPs for reliable control ELMs in future ITER high Q plasma scenarios with minimum detrimental effects on plasma confinement.
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ∼ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at which magnetic islands form are similar for applied n = 1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Together, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.