Coexisting multi-geodesic acoustic modes (GAMs), especially coexisting dual GAMs, are observed and studied through Langmuir probe arrays at the edge plasmas of the HT-7 tokamak with lithium-coated walls. The dual GAMs are named a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), and it is found that within the measuring range, the HFGAM propagates outwards while the LFGAM propagates both inwards and outwards with their central frequencies nearly unchanged, and both modes have maximum amplitudes at positions with radial wavenumbers close to zero; meanwhile, the two positions happen to be where the continuum GAM frequency is closest to the central frequencies of the LFGAM and the HFGAM. These characteristics are consistent with those of a kinetic GAM converted from a continuum GAM. The nonlinear couplings between the LFGAM and the HFGAM are also analysed. In this study, we observed not only the interaction between the LFGAM and the HFGAM, but also the self-coupling of the GAM with the beat frequency between them, as well as the coupling between the LFGAM and an unknown mode at ∼50 kHz. These nonlinear interactions may play important roles during the saturation process of GAMs. Additionally, amplitude correlation analyses of multi-GAMs indicate that second harmonic GAMs are probably generated from the self-interaction of fundamental GAMs.
Small perturbations and strong impurity exhaust capability associated with the small grassy ELMs render the grassy-ELM regime a suitable candidate for achieving steady-state H-mode operation with a radiative divertor, especially in a metal-wall device, such as the Experimental Advanced Superconducting Tokamak (EAST). As the degradation of pedestal performance with excessive divertor impurity seeding or accumulation tends to be accompanied with significantly increased radiation near the divertor X point, feedback control of the absolute extreme ultraviolet (AXUV) radiation near the X point has been employed to maintain the confinement property in EAST. However, the absolute value of the AXUV radiation at the outer target varies with plasma conditions as during the divertor detachment process. Thus, a new feedback-control scheme has been recently developed and applied to grassy-ELM H-mode plasmas in EAST to achieve stationary partial detachment while maintaining good global energy confinement with H 98,y2 >1. In this scheme, electron temperatures (T et) measured by divertor Langmuir probes are used to identify the onset of detachment, and then the plasma control system (PCS) switches to the feedback control of one channel of AXUV radiation near the X point, where a steep gradient in the radiation profile is present. The feedback is performed through pulse-width-modulated duty cycle of a piezo valve to seed impurities with mixed gas (50% Ne and 50% D2) from the outer target plate near the strike point in the upper tungsten monoblock divertor. T et near the strike point is maintained in the range of 5–8 eV, and peak surface temperature on the outer target plate (T IR,peak) is suppressed and maintained at ∼180 °C, based on infrared camera measurements. The plasma stored energy maintains nearly constant over the entire feedback-control period. It thus offers a highly promising plasma control scenario suitable for long-pulse high-performance H-mode operation in EAST, which is potentially applicable to future steady-state fusion reactors as an integrated solution for the control of both ELM-induced transient and steady-state divertor heat loads while maintaining good core confinement.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.