During a 9-year period 47 patients with 62 keloids, treated with excision and postoperative superficial X-ray irradiation, were included in a retrospective study. The follow-up time was 6 months to 9 years. 88% experienced a good or excellent result. Single or fractioned dose and time interval between excision and radiation did not influence the result. Hyperpigmentation was noted as a side effect in 16 of 47 patients. More favorable results were obtained in the treatment of small keloids and of keloids located in the head-neck area compared to those on the trunk and the extremities.
Molecular spintronics is made possible by the coupling between electronic configuration and magnetic polarization of the molecules. For control and application of the individual molecular states it is necessary to both read and write their spin states. Conventionally, this is achieved by means of external magnetic fields or ferromagnetic contacts, which may change the intentional spin state and may present additional challenges when downsizing devices. Here, we predict that coupling magnetic molecules together opens up possibilities for all electrical control of both the molecular spin states as well as the current flow through the system. Tuning between the regimes of ferromagnetic and anti-ferromagnetic exchange interaction, the current can be, at least, an order of magnitude enhanced or reduced. The effect is susceptible to the tunnel coupling and molecular level alignment which can be used to achieve current rectification. Molecular spintronics is a field which aims to merge the flexibility of synthetic design of molecular compounds with novel functionalities offered by magnetic properties in conjunction with electronics circuits [1]. Magnetically active molecules have been used to demonstrate spin valve effect using external magnetic fields [2], stochastic switching between high and low conductive states by transitions between spin singlet and triplet ground states [3][4][5][6], controlled transport properties via paramagnetic atoms [7], as well as their potential for quantum based computation [8][9][10][11][12][13]. Arrays of magnetic molecules inserted between conducting leads, moreover, provide an important forum to investigate fundamental magnetic properties of finite one-dimensional Ising or Heisenberg chains [14][15][16] as well as potential for electrical and thermal control of the magnetic state. Certain classes of molecules, e.g., metal-phthalocyanines (MPc) and metal-porhyrins (MP) present chemical stability with specific optical and electrical properties make them highly appreciated for technological applications including organic field effect transistors [17,18], light emitting devices [19,20] and photovoltaic cells [21], and for fundamental studies [7,[22][23][24][25][26][27].While incorporation of magnetic elements in molecular compounds can have a significant effect on the overall molecular transport properties [7], the main established route to spintronics manipulations entails external magnetic fields [2] or ferromagnetic electrodes [28,29], often exploiting spin transfer torques from spin-polarized scattering [30] or Coulomb interaction [31]. Here, we propose a different route to molecular spintronics based on voltage induced control of magnetic interactions that allows for all electrical control of the transport properties. Deriving from local exchange interactions between the localized spin moments and the electrons in paramagnetic molecules, an indirect effective spinspin interaction is generated between the molecular spin moments through the electron tunneling between the molecules [32...
The age of microscopic lesions in psoriatic subjects was assessed from the stacking characteristics in the horny layer and related to type and density (cells/tissue volume) of mononuclear cells in the epidermis and the dermis determined by immunoperoxidase methods using monoclonal antibodies. Pan T cells (Lyt-2+, Lyt-3+, Leu-4+, OKT3+), T helper cells (Leu-3a+, OKT4+), T suppressor/cytotoxic cells (Leu-2a+, OKT8+), Ia+ cells and monocytes (OKM2+, BRL alpha mono+) were determined in epidermis and dermis. The psoriatic lesion was divided into regions underneath a parakeratotic and an orthohyperkeratotic/hypergranular portion of the horny layer and contrasted with perilesional and uninvolved psoriatic skin as well as with healthy skin. In the various regions and skin layers, the cell density was highest in parakeratosis and decreased toward normality with decreasing histologic abnormality. The relation between epidermal and dermal cell densities of the T-cell subsets was modified in the involved psoriatic skin with a selective preponderance of T suppressor/cytotoxic cells in the epidermis. The accumulation was present in the youngest lesion found (3 days) and cell densities were unchanged in older lesions. The findings suggests that the altered relationship in the subsets of T cells has an important role during the induction and progress of the psoriatic process in the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.