Summary The Heat Shock Response (HSR) is critical for survival of all organisms. However, it’s scope, extent, and the molecular mechanism of regulation is poorly understood. Here we show the genome-wide transcriptional response to heat-shock in mammals is rapid, dynamic, and results in induction of several hundred and repression of several thousand genes. Heat Shock Factor-1 (HSF1), ‘the master regulator’ of the HSR, controls only a fraction of heat-shock induced genes, and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1; however, Serum Response Factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent, and is mediated through reduction of RNA polymerase II pause-release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat-shock that are largely modulated at pause-release, and HSF1 plays a limited and specialized role.
The human genome encodes a variety of poorly understood RNA species that remain challenging to identify using existing genomic tools. We developed chromatin run-on and sequencing (ChRO-seq) to map the location of RNA polymerase using virtually any input sample, including samples with degraded RNA that are intractable to RNA-seq. We used ChRO-seq to map nascent transcription in primary human glioblastoma (GBM) brain tumors. Whereas enhancers discovered in primary GBMs resemble open chromatin in the normal human brain, rare enhancers activated in malignant tissue drive regulatory programs similar to the developing nervous system. We identified enhancers that regulate genes characteristic of each known GBM subtype, identified transcription factors that drive them, and discovered a core group of transcription factors that control the expression of genes associated with clinical outcomes. This study reveals the transcriptional basis of GBM and introduces ChRO-seq to map regulatory programs contributing to complex diseases.
Heat shock factor 1 (HSF1) is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.
Heat shock transcription factor (HSF1) is a conserved master regulator that orchestrates the protection of normal cells from stress. However, HSF1 also protects abnormal cells and is required for carcinogenesis. Here, we generate an highly specific RNA aptamer (iaRNAHSF1) that binds Drosophila HSF1 and inhibits HSF1 binding to DNA. In Drosophila animals, iaRNAHSF1 reduces normal Hsp83 levels and promotes developmental abnormalities, mimicking the spectrum of phenotypes that occur when Hsp83 activity is reduced. The HSF1 aptamer also effectively suppresses the abnormal growth phenotypes induced by constitutively active forms of the EGF receptor and Raf oncoproteins. Our results indicate that HSF1 contributes toward the morphological development of animal traits by controlling the expression of molecular chaperones under normal growth conditions. Additionally, our study demonstrates the utility of the RNA aptamer technology as a promising chemical genetic approach to investigate biological mechanisms, including cancer and for identifying effective drug targets in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.