Northwest Africa (NWA) 6112, Miller Range (MIL) 090206 (plus its pairs: MIL 090340 and MIL 090405), and Divnoe are olivine‐rich ungrouped achondrites. We investigated and compared their petrography, mineralogy, and olivine fabrics. We additionally measured the oxygen isotopic compositions of NWA 6112. They show similar petrography, mineralogy, and oxygen isotopic compositions and we concluded that these five meteorites are brachinite clan meteorites. We found that NWA 6112 and Divnoe had a c axis concentration pattern of olivine fabrics using electron backscattered diffraction (EBSD). NWA 6112 and Divnoe are suggested to have been exposed to magmatic melt flows during their crystallization on their parent body. On the other hand, the three MIL meteorites have b axis concentration patterns of olivine fabrics. This indicates that the three MIL meteorites may be cumulates where compaction of olivine grains was dominant. Alternatively, they formed as residues and were exposed to olivine compaction. The presence of two different olivine fabric patterns implies that the parent body(s) of brachinite clan meteorites experienced diverse igneous processes.
Our goal was to devise a bridge between shock determinations of asteroid regolith grains by standard light optical petrography, synchrotron X‐ray diffraction (SXRD), and electron backscattered diffraction (EBSD). We determined the optimal conditions under which to measure the shock stage of olivine crystals in astromaterial grains by EBSD. We applied this EBSD procedure to the shock stage determination of four regolith grains from asteroid Itokawa, returned to earth by the Hayabusa spacecraft. Interpretation of these data required a parallel examination of three ordinary chondrite standards that exhibited shock histories ranging from stage 2 to stage 4, using all three techniques. Standard light optical petrography indicated shock stage of S2/3 for the 24 Itokawa grains analyzed. SXRD results for seven Itokawa grains indicate a shock stage of S2. EBSD maps of four Itokawa grains indicate shock stage S3. Thus, the different techniques indicate slightly different shock stages, probably due to small sampling populations for EBSD and SXRD. We therefore recommend that significantly more than seven regolith grains should be separately analyzed by any shock determination technique, probably between 10 and 20. In any case, Itokawa regolith grains have been shocked to stage S2/3, or approximately 5–10 GPa. Finally, we investigated the crystallinity of one Itokawa olivine by SXRD, determining that the 5–10 GPa shock it had experienced did not appreciably alter the size of the unit cell, contrary to some previous suggestions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.