1. An enzyme extracted from Pseudomonas acidovorans was purified and shown to catalyse the simultaneous dehydration and decarboxylation of d-4-deoxy-5-oxoglucarate. It is proposed to name the enzyme d-4-deoxy-5-oxoglucarate hydro-lyase (decarboxylating), trivial name ;deoxyoxoglucarate dehydratase'. 2. No added cofactors were required, and the enzyme was inactivated when incubated with its substrate in the presence of sodium borohydride. Under these conditions the substrate and enzyme appeared to be bound covalently. 3. The action of the enzyme is readily explained if it is assumed that d-4-deoxy-5-oxoglucarate forms a Schiff base with a lysine residue in the enzyme.
1. Imidazol-5-ylpropionate and imidazol-5-yl-lactate are degraded by Pseudomonas testosteroni via inducible pathways. 2. Growth on either compound as the sole source of carbon results in the induction of the enzymes for histidine catabolism. 3. The pathway of histidine degradation in this organism, a non-fluorescent Pseudomonad, is shown to be the same as that operating in Pseudomonas fluorescens and Pseudomonas putida. It consists of the successive formation of urocanate, imidazol-4-on-5-ylpropionate, N-formimino-l-glutamate, N-formyl-l-glutamate and glutamate. 4. Whole cells of P. testosteroni accumulate urocanate in the reaction mixture when incubated with imidazolylpropionate, but only after an adaptive lag period which is removed by previous growth on imidazolylpropionate as the source of carbon. 5. Imidazolyl-lactate is oxidized to imidazolylpyruvate, which then gives rise to histidine by specific transamination with l-glutamate. 6. Cells grown on histidine, urocanate or imidazolylpropionate are also able to degrade imidazolyllactate. 7. Mutants lacking urocanase are unable to grow on imidazolylpropionate, imidazolyl-lactate, histidine or urocanate. One with impaired histidase activity cannot utilize histidine or imidazolyl-lactate, but grows normally on imidazolylpropionate or urocanate. A mutant unable to grow on imidazolylpropionate is indistinguishable from the wild-type with respect to growth on histidine, imidazolyl-lactate or urocanate. 8. Thus it is established that imidazolyl-lactate is metabolized via histidine whereas imidazolylpropionate enters the histidine degradation pathway after conversion into urocanate.
1. Dehydratases that converted d-glucarate into 4-deoxy-5-oxoglucarate were partially purified from Klebsiella aerogenes and Pseudomonas acidovorans. 2. When d-glucarate was metabolized to 2,5-dioxovalerate it appeared that water and carbon dioxide were removed from 4-deoxy-5-oxoglucarate in one enzymic step: 4,5-dihydroxy-2-oxovalerate was not an intermediate in this reaction. 3. A method for the enzymic determination of d-glucarate is described.
1. Oxidized (polymerized) histidine ammonia-lyase from Pseudomonas testosteroni was activated with dithiothreitol and the reduced disulphide-linked cysteine residues of the native enzyme were carboxymethylated with iodo[(14)C]acetate. 2. The activity of the carboxymethylated enzyme was similar to that of the polymerized form and approx. 15% of that of the fully reduced form. 3. A tryptic digest of the [(14)C]carboxymethylated enzyme contained only one radioactive peptide. 4. The amino acid sequence of this peptide was shown to be Gly-Leu-Leu-Asp-Gly-Ser-Ala-Ile-Asn-Pro-Ser-His-Pro-Asn-Cys- (CH(2)CO(2)H)-Gly-Arg. 5. These findings show that, during polymerization, the disulphide bonds are formed between identical regions of the enzyme, and that the cysteine residue involved is also the one required in the reduced state for full activity of the enzyme.
1. Soluble and mitochondrial forms of histidine-pyruvate aminotransferase were separated from rat liver preparations by chromatography on DEAE-cellulose. 2. These enzymes were characterized with respect to substrate specificity, substrate affinity, pH optimum, stability and molecular weight by chromatography on Sephadex G-200. 3. Each enzyme has a relatively broad specificity showing significant activity towards l-phenylalanine and l-tyrosine and catalysing transamination with a number of monocarboxylic 2-oxo acids. 2-Oxoglutarate is not a substrate for either enzyme. 4. The molecular weights of the two enzymes, by chromatography on Sephadex G-200, are in the range 130000-150000. 5. The formation in vitro of imidazolyl-lactate from imidazolylpyruvate and NADH was demonstrated by using liver preparations. 6. From a study of imidazolyl-lactate-NAD(+) oxidoreductase activity after electrophoresis of liver preparations on polyacrylamide gel, and from an examination of the activity of l-lactate-NAD(+) oxidoreductase (EC 1.1.1.27) towards imidazolylpyruvate, it is concluded that this latter enzyme is responsible for the formation of imidazolyl-lactate in the liver. 7. Preparations of bacteria obtained from rat faeces form imidazolylpropionate from l-histidine and urocanate without further subculture. The amount of imidazolylpropionate formed is increased under anaerobic conditions and more so in an atmosphere of H(2). It is suggested that the gut flora of the rat contribute largely, if not exclusively, to the formation of imidazolylpropionate normally found in the urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.