Glucocorticoids can induce a G 1 arrest in the cell cycle progression of BDS1 rat hepatoma cells. In these cells, dexamethasone, a synthetic glucocorticoid, stimulated a rapid and selective increase in expression of the p21 cyclin-dependent kinase (CDK) inhibitor mRNA and protein and virtually abolished CDK2 phosphorylation of the retinoblastoma protein. Expression of the p27 CDK inhibitor, and other G 1 -acting cell cycle proteins, remained unaffected. Dexamethasone stimulated p21 promoter activity in a p53-independent manner that required functional glucocorticoid receptors. Transforming growth factor-, which also induced a G 1 cell cycle arrest of the hepatoma cells, failed to elicit this response. Analysis of 5 deletions of the p21 promoter uncovered a glucocorticoid responsive region between nucleotides ؊1481 and ؊1184, which does not contain a canonical glucocorticoid response element but which can confer dexamethasone responsiveness to a heterologous promoter. Fine mapping of this region uncovered three distinct 50 -60-base pair transcriptional elements that likely function as targets of glucocorticoid receptor signaling. Finally, ectopic expression of p21 had no effect on hepatoma cell growth in the absence of glucocorticoids but facilitated the ability of dexamethasone to inhibit cell proliferation. Thus, our results have established a direct transcriptional link between glucocorticoid receptor signaling and the regulated promoter activity of a CDK inhibitor gene that is involved in the cell cycle arrest of hepatoma cells.
sgk is a novel member of the serine/threonine protein kinase gene family that is transcriptionally regulated by serum and glucocorticoids in mammary epithelial cells. To functionally determine if the sgk promoter is regulated by the p53 tumor suppressor protein in mammary cells, a series of sgk promoter fragments with 5 -deletions were linked to the bacterial chloramphenicol acetyltransferase gene (sgk-CAT) and transiently cotransfected into nontumorigenic NMuMG or transformed Con8Hd6 mammary epithelial cells with p53 expression plasmids. Wild-type p53, but not mutant p53, strongly stimulated sgk promoter activity in both mammary epithelial cell lines. These effects were mediated by specific regions within the sgk promoter containing p53 DNA-binding sites. The sgk p53 sequence at ؊1380 to ؊1345 (site IV) was sufficient to confer p53-dependent transactivation to a heterologous promoter, and p53 was capable of binding to this sequence in vitro as assessed by gel shift analysis. In the nontumorigenic NMuMG epithelial cell line, cotransfection of wild-type p53 strongly stimulated the activities of both the sgk promoter and the well characterized p53-responsive p21/ Waf1 promoter, whereas in Rat-2 fibroblasts, wild-type p53 repressed the basal activities of both promoters, revealing that sgk and p21/Waf1 are similarly regulated in a cell type-specific manner. Taken together, these results demonstrate that sgk is a new transcriptional target of p53 in mammary epithelial cells and represent the first example of a hormone-regulated protein kinase gene with a functionally defined p53 promoter recognition element.An intricate network of protein kinases and phosphatases propagates various extracellular growth and differentiation signals from the plasma membrane into the nucleus, leading to changes in the phosphorylation status and the function of discrete sets of transcription factors. The catalytic activities of most protein kinases are regulated by specific interactions with regulatory proteins (1-3) and/or by phosphorylation (4, 5). Recent studies have uncovered a newly emerging subfamily of serine/threonine protein kinase genes, including snk, sgk, plk, and fnk, that are predominantly regulated at the transcriptional level by hormone-and/or mitogen-induced pathways (6 -13). Our previous studies have identified the sgk (serum-and glucocorticoid-inducible protein kinase) serine/threonine protein kinase gene, which is transcriptionally regulated by serum and/or glucocorticoids in mammary epithelial cells and Rat-2 fibroblasts (12, 13), as the second member of this subfamily of transcriptionally regulated protein kinase genes. sgk encodes a 49-kDa putative protein kinase that shares 45-55% homology with the catalytic domain of protein kinase C, the cAMP-dependent protein kinase A, the rac protein kinases, and the ribosomal protein S6 kinase (13). We have documented that sgk transcripts are expressed in a variety of adult rat tissues, with the highest expression in the thymus, lung, and ovary and detectable levels in the ma...
The glucocorticoid and transforming growth factor-alpha (TGF-alpha) regulation of growth and cell-cell contact was investigated in the Con8 mammary epithelial tumor cell line derived from a 7,12-dimethylbenz(alpha)anthracene-induced rat mammary adenocarcinoma. In Con8 cell monolayers cultured on permeable filter supports, the synthetic glucocorticoid, dexamethasone, coordinately suppressed [3H]thymidine incorporation, stimulated monolayer transepithelial electrical resistance (TER), and decreased the paracellular leakage of [3H]inulin or [14C]mannitol across the monolayer. These processes dose dependently correlated with glucocorticoid receptor occupancy and function. Constitutive production of TGF-alpha in transfected cells or exogenous treatment with TGF-alpha prevented the glucocorticoid growth suppression response and disrupted tight junction formation without affecting glucocorticoid responsiveness. Treatment with hydroxyurea or araC demonstrated that de novo DNA synthesis is not a requirement for the growth factor disruption of tight junctions. Immunofluorescence analysis revealed that the ZO-1 tight junction protein is localized exclusively at the cell periphery in dexamethasone-treated cells and that TGF-alpha caused-ZO-1 to relocalize from the cell periphery back to a cytoplasmic compartment. Taken together, our results demonstrate that glucocorticoids can coordinately regulate growth inhibition and cell-cell contact of mammary tumor cells and that TGF-alpha, can override both effects of glucocorticoids. These results have uncovered a novel functional "cross-talk" between glucocorticoids and TGF-alpha which potentially regulates the proliferation and differentiation of mammary epithelial cells.
The synthetic glucocorticoid, dexamethasone, stimulated the transepithelial electrical resistance and suppressed the DNA synthesis of 31EG4 nontransformed mouse mammary epithelial cells. The addition of transforming growth factor-beta 1 (TGF-beta) to mammary cells simultaneously with or up to 24 h after dexamethasone treatment prevented the steroid induction of transepithelial electrical resistance and stimulated the incorporation of [3H]thymidine. However, the TGF-beta inhibition of tight junction formation did not require de novo DNA synthesis. Confocal microscopy revealed that the organized immunostaining pattern of the tight junction protein, ZO-1, and F-actin at the cell periphery was disrupted by TGF-beta, resulting in disorganized and diffuse staining patterns throughout the cell. Western blot analysis demonstrated that TGF-beta did not alter the protein levels of ZO-1. In contrast to cells not treated or pretreated with steroid for up to 24 h, TGF-beta had no effect on cells pretreated with dexamethasone for 48 h. Transfection of chimeric reporter genes containing promoters responsive to either glucocorticoid or TGF-beta demonstrated that the mutual antagonism of tight junction dynamics by dexamethasone and TGF-beta occurs in the presence of intact signaling pathways. Taken together, our results establish for the first time that glucocorticoids and TGF-beta can antagonistically regulate tight junction formation in a nontransformed mammary cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.