The hypothesis tested was that the hemodynamic consequence of partial hepatectomy (PHX) triggers the cascade of events that leads to liver regeneration. After PHX, all the portal flow must go through the remaining vascular bed, thus producing increased shear stress and release of nitric oxide (NO), which then initiates the next stages of the regeneration process. As an index of triggering of the regeneration cascade, we used an in vitro bioassay detecting the appearance of proliferating factors (PFs; various growth factors, cytokines, and hormones) in plasma 4 h after two-thirds PHX in rats. PF levels, assessed using proliferation of cultured hepatocytes, were elevated in two-thirds PHX rats, fully blocked by the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), and restored by L-arginine. L-NAME inhibited liver weight restoration at 48 h but resulted in high mortality. L-NAME lacked toxic effects in non-PHX rats. NO was directly antiproliferative on cultured cells, suggesting that the proliferative effect of NO in vivo was secondary to the activation of other proliferative stimuli. The data support the hypothesis that vascular shear stress induced release of NO following PHX serves as a primary trigger to initiate the regeneration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.