[1] Isotopic hydrograph separation (IHS) to define sources of event and preevent water during hydrological episodes has greatly improved the understanding of water, solute, and contaminant transport to streams during recent decades. However, the large variation in snowmelt isotopic composition, caused by fractionation during melting, has impeded an accurate separation of streamflow during spring flood episodes. Here we present a method that greatly improves the separation of event and preevent water during snowmelt by accounting for both the temporal change in the snowmelt isotopic signal and the temporary storage of meltwater in the catchment. Comparison of results of this technique with previous results, using isotopic data from the 1997 spring flood on a small catchment in northern Sweden, suggests that earlier techniques significantly underestimate the preevent contribution. This paper also explores the importance of lateral mixing across the catchment of temporally varying event inputs for the IHS results.
Between 1990 and 1999, SO4(2-) deposition in northern Sweden decreased by over 50%. To determine if a corresponding amelioration of stream acidity has occurred, we analyzed trends in anthropogenically driven episodic acidification in five streams during the same time period, using the Boreal Dilution Model (BDM) (Bishop, K. H.; Laudon, H.; Kohler, S. Water Resour. Res. 2000, 36, 1873-1884). Although there was no significant change in the annual average streamwater chemistry, the anthropogenically driven episodic acidification associated with spring flood runoff decreased by between 40% and 80%. A strong correlation between winter SO4(2-) deposition and the anthropogenic component of episodic acidification in these five streams suggests that future reductions of acid deposition will further improve the spring flood acidification situation in northern Sweden. These results argue that reduced emissions of acid precursors have generated significant improvements in the surface water chemistry during episodes associated with spring runoff in northern Sweden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.