Copper-silicide precipitates in silicon obtained after copper diffusion and quench in different liquids were studied by transmission electron microscopy and capacitance spectroscopy techniques. A correlation between the quenching rate, geometric size, and deep level spectra of the copper-silicide precipitates was established. The unusually wide deep level spectra are shown to be due to a defect-related band in the bandgap. The parameters of the band are evaluated using numerical simulations. A positive charge of copper-silicide precipitates in p-type and moderately doped n-type Si is predicted by simulations and confirmed by minority carrier transient spectroscopy measurements. Strong recombination activity of the precipitates due to attraction of minority carriers by the electric field around the precipitates and their recombination via the defect band is predicted and confirmed by the experiments. The pairing of copper with boron is shown to be an important factor determining the precipitation kinetics of the interstitial copper at room temperature.) unless CC License in place (see abstract). ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 132.239.1.231 Downloaded on 2014-11-18 to IP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.