Topsoe Fuel Cell (TOFC) provides the SOFC technology platform: Cells, stacks, and integrated stack module for different applications and collaborates with integrator partners to develop, test and demonstrate SOFC applications. The technology development is based on a R&D consortium with Risø National Laboratory (Risø/DTU) which includes material synthesis and cost effective ceramic manufacturing methods for anode and metal supported flat planar cells in addition to multilayer assembling for compact stacks with metallic interconnects. The development is focussing on high electrochemical performance and durability as well as maximal robustness. In 2008 TOFC has constructed a 5 MW/year cell and stack production facility in Denmark featuring all the necessary unit operations from ceramic powder, continuous tape casting, screen printing, spray painting and sintering to complete stack modules. TOFC's engagement in SOFC technology includes system development in collaboration with system partners and development and manufacturing of integrated stack assemblies called PowerCore.
The SOFC development at Topsoe Fuel Cell A/S (TOFC) and Risø DTU is based on a R&D consortium which includes material development and manufacturing of materials, cells and stacks with metallic interconnects focussing on high electrochemical performance, durability and robustness. A significant effort is directed towards improvement of current generations as well as development of the next generation SOFC technology. The innovative concept of the next generation, aiming at improved reliability and robustness, is based on metal-supported cells and nano-structured electrodes with perspectives of several potential advantages over conventional Ni-YSZ anode supported cells. Recently, record-breaking results have been obtained on cell level as well as on stack level. The collaboration has the objective to effectively transfer scientific results to industrial technology upscaling and application. TOFC is engaged in development and demonstration of stack assemblies, multi-stack modules and PowerCore units that integrate stack modules with hot fuel processing units.
The SOFC technology under development at Risø National Laboratory (RISØ) and Topsoe Fuel Cell A/S (TOFC) is based on an integrated approach ranging from basic materials research on single component level over development of cell and stack manufacturing technology to system studies and modelling. The effort also comprises an extensive cell and stack testing program. Systems design, development and test is pursued by TOFC in collaboration with various partners. The standard cells are thin and robust with dimensions of 12 x 12 cm2 and cell stacks are based on internal manifolding. Production of cells is being up-scaled continuously. The durability of the standard stack design with standard cells has been tested for more than 13000 hours including nine full thermal cycles with an overall voltage degradation rate of about 1% per 1000 hours. Recently, the degradation rate has been significantly reduced by introduction of improved stack component materials. 75-cell stacks in the 1+ kW power range have been tested successfully. Stacks have been delivered in a pre-reduced state to partners and tested successfully in test systems with natural gas as fuel. The consortium of TOFC and RISØ has an extended program to develop the SOFC technology all the way to a marketable product. Stack and system modelling including cost optimisation analysis is used to develop multi kW stack modules for operation in the temperature range 700-850oC. To ensure the emergence of cost-competitive solutions, a special effort is focused on larger anode-supported cells as well as a new generation of SOFCs based on porous metal supports and new electrode and electrolyte materials. The SOFC program comprises development of next generation of cells and multi stack modules for operation at lower temperature with increased durability and mechanical robustness in order to ensure long-term competitiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.