We present new photometry of 16 local Seyferts including 6 Compton-thick sources in N-band filters around 12-μm, obtained with the VISIR instrument on the 8-m Very Large Telescope. The near-diffraction-limited imaging provides the least-contaminated core fluxes for these sources to date. Augmenting these with our previous observations and with published intrinsic X-ray fluxes, we form a total sample of 42 sources for which we find a strong mid-infrared:X-ray (12.3 μm:2-10 keV) luminosity correlation. Performing a physically-motivated subselection of sources in which the Seyfert torus is likely to be best-resolved results in the correlation L MIR ∝ L X 1.11±0.07 , with a reduction of the scatter in luminosities as compared to the full sample. Consideration of systematics suggests a range of 1.02-1.21 for the correlation slope. The mean 2-keV:12.3-μm spectral index (α IX ) is found to be −1.10 ± 0.01, largely independent of luminosity. Indirectly-computed 12-μm bolometric corrections range over ≈10-30 if a known luminosity trend of X-ray bolometric corrections is assumed. Comparison with ISO data spanning a wider luminosity range suggests that our correlation can be extended into the quasar regime. That unobscured, obscured, and Compton-thick sources all closely follow the same luminosity correlation has important implications for the structures of Seyfert cores. The typical resolution-limit of our imaging corresponds to ∼70 pc at a median z = 0.01, and we use the tightness of the correlation to place constraints on the dominance of any residual emission sources within these physical scales. An upper-limit for any contaminating star formation of ≈40% of the unresolved flux is inferred, on average. We suggest that uncontaminated mid-IR continuum imaging of AGN is an accurate proxy for their intrinsic power.
Context. The interaction of the light from astronomical objects with the constituents of the Earth's atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims. We present molecfit, a tool to correct for telluric absorption lines based on synthetic modelling of the Earth's atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods. Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatory's climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results. Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusions. Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. The accuracy reached is comparable to or better than the typical accuracy achieved using a telluric standard star observation. The availability of such a general tool for telluric absorption correction may improve future observational and analysing strategies, as well as empower users of archival data.
Context. Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims. We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT/X-Shooter visible and near-infrared spectra. Methods. Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I off and I res , that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with molecfit to the classical method based on a telluric standard star. Results. The evaluation of the telluric correction with molecfit shows a convincing removal of atmospheric absorption features. The comparison with the classical method reveals that molecfit performs better because it is not prone to the bad continuum reconstruction, noise, and intrinsic spectral features introduced by the telluric standard star. Conclusions. Fitted synthetic transmission spectra are an excellent alternative to the correction based on telluric standard stars. Moreover, molecfit offers wide flexibility for adaption to various instruments and observing sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.