Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector when axions are incident at a Bragg angle with a crystalline plane. The analysis of 1.94 kg yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound by an axion-photon coupling of g agg , 2.7 3 10 29 GeV 21 , independent of axion mass up to ϳ1 keV. [S0031-9007(98)07812-0] PACS numbers: 14.80. Mz, 96.60.Vg Early QCD theories predicted a particle with the quantum numbers of the h meson, but with a mass close to that of the pion. A term added to the QCD Lagrangian to ameliorate this so-called U(1) problem violated CP invariance in strong interactions and implied a neutron electric-dipole moment about 10 9 times larger than the experimental upper bound [1]. Peccei and Quinn [2] introduced a new field causing strong CP violation to vanish dynamically. Subsequently, Weinberg [3,4] and Wilczek [5] demonstrated that the Peccei-Quinn mechanism generates a Nambu-Goldstone boson, the axion, that couples to a two-photon vertex via a coupling g agg . Axion production via the Primakoff effect occurs when a photon couples to a charge via a virtual photon, producing an axion. Detection can occur by observing photons resulting from axions coupling to electrical charges via virtual photons.The dense volume of photons and charges in the sun or any star produces conditions for axion production. The Ge detector then can act as the axion-photon converter and detector. When the characteristic wavelength of the axion satisfies a Bragg condition in the single crystal Ge detector, photon production would occur with an expected temporal pattern depending on the changing relative directions between the vectors from the solar core and the crystalline planes.Extensive reviews of axion phenomenology and their effects on stellar evolution have been given by Raffelt [6,7] who gives a bound of 10 210 GeV 21 on the coupling of axions to the two-photon vertex from the population of red giant stars. A detailed treatment of solar axions and of a proposed method of detecting them was given by van Bibber et al. [8]. Details of a theory for searching for axions with germanium detectors were recently given by Creswick et al. [9]. The objective is to detect solar axions through their coherent Primakoff conversion into photons in the lattice of a germanium crystal when the incident angle satisfies the Bragg condition. The detection rates in various energy windows are correlated with the relative orientations of the detector and the sun [9]. This correlation results in a distinctive, unique signature of the axion. In this Letter, the results of a search using a 1 kg, ultralow background germanium detector installed in the HIPARSA iron mine in Sierra Grande, Argentina, at 410 24 00 S and 65 ± 22 0 W are presented. A description of the experimental setup and detector spectrum was given earlier by Di Gregori...
Abstract. The 8.4 Tesla, 10 m long transverse magnetic field of a twin aperture LHC bending magnet can be utilized as a macroscopic coherent solar axion-to-photon converter. Numerical calculations show that the integrated time of alignment with the Sun would be 33 days per year with the magnet on a tracking table capable of ±5 o in the vertical direction and ±40 o in the horizontal direction. The existing lower bound on the axion-to-photon coupling constant can be improved by a factor between 30 and 100 in 3 years, i.e., g aγγ < ∼ 9 · 10 −11 GeV −1 for axion masses < ∼ 1 eV. This value falls within the existing open axion mass window. The same set-up can simultaneously search for lowand high-energy celestial axions, or axion-like particles, scanning the sky as the Earth rotates and orbits the Sun.
We report on new estimates of the modulation expected in semiconductor detectors due to the eclipsing of dark matter particles in the Earth. We reevaluate the theoretical modulation significances and discuss the differences found with previous calculations. We find that a significantly larger statistics than previously estimated is needed to achieve the same level of sensitivity in the modulated signal. ͓S0556-2821͑97͒07208-1͔ PACS number͑s͒: 95.35.ϩd, 14.60.St
Results on stress analysis for single-crystal diamonds are presented. Isolated crystals were studied by Raman mapping and depth profiling techniques, using confocal microscopy. Diamonds were deposited on molybdenum and tantalum by hot filament and microwave CVD methods at growth rates between 10 and 30 μm·h-1. Crystals from 10 to 40 μm size were examined. Local stress was evaluated by analyzing the position, broadening and splitting of the 1332 cm-1 Raman peak in a 3D mapping. For the (001) orientation, the most stressed zone was found at the center of the crystal base, close to the interface with the substrate: a Raman peak around 1340 cm-1 was measured, corresponding to a pressure c.a. 3 GPa, according to our dynamical calculations. This peak disappears few microns out of the center, suggesting that this highly concentrated stress sector was the nucleation zone of the crystal. A shifting and slight broadening of the 1332 cm-1 band was observed in the rest of the crystal. The causes of these effects are discussed: they proved not to be due to anisotropic stress but to refractive effects. Same results were found for different crystal sizes and growth rates.
Uranium(VI) sorption by two highly uranium-resistant air-borne fungi in a low-pH medium was measured by means of gamma spectrometry. Growth kinetics and stoichiometry of the two fungal species were also studied. Results show acceptable growth rates in synthetic medium with glucose and ammonia as carbon and nitrogen sources, respectively. Typical oxidative metabolism of carbohydrates was found. In vivo uptake of the radionuclide was negligible, but biosorption dry biomass presented a remarkable performance. The fungal strains showed potential for use in bioremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.