Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different fixation techniques can only be compared if the respective studyimmanent shrinkage factor has been determined and quantification results are adjusted accordingly.
In the fetal development of animals, critical physiological and anatomical events influence the long-term health and performance of the offspring. To identify the critical growth phases of the fetal bovine stomach, we used computed tomography imaging on 30 German Holstein fetuses to examine the fetal bovine stomach in situ. Computed tomography allows the study of diverse parameters such as the volume of the stomach chambers in situ without the need for sophisticated filling preparation techniques. The absolute volume, relative volume, and monthly volume increase of each stomach chamber were determined. Computed tomography was a reliable method for in situ examination of the fetal bovine stomach complex from the third month of gestation onward. It was able to detect an abnormal position of the abomasum in 2 fetuses. The crown-rump length of the fetuses studied ranged from 9.5 to 89 cm (from 2.2 to 8.3 mo of gestation). Over this timeline, the changes in the relative volumes of the ruminoreticulum and abomasum were inversely related. Until mo 5 of gestation, the relative volume of the ruminoreticulum increased steadily, whereas that of the abomasum decreased. Thereafter, the relative volume of the ruminoreticulum became gradually smaller, and that of the abomasum became larger; by mo 8, the abomasum was larger than the ruminoreticulum. All stomach chambers had large increases in volume over the gestation period and we observed differences in development patterns and volume changes of the individual stomach chambers over this period. The largest monthly volume increase of the stomach complex was between mo 4 and 5 of gestation. In this period, the volume of the ruminoreticulum increased 43.8 times, that of the omasum 38.9 times, and that of the abomasum 30.03 times. Between mo 5 and 6 of gestation, the abomasum had another growth spurt, with a monthly volume increase of 10.4 times. These 2 time points in the gestation period may be critical phases of fetal development that should be considered in the management of pregnant cattle.
The 2-year-old sheep is a frequently used model in spinal orthopaedic research; however, so far no investigations have been performed on physiological tissue of untreated animals. In this study, the cervical spine segment 3/4 of eight 2-year-old female Merino sheep was evaluated histologically and histomorphometrically. Specimens were stained with Masson-Goldner-Trichrome, Safranin-Orange/Lightgreen, Safranin-Orange/von Kossa and Astrablue. Analysis of bone mass, mass of cartilage and mineralized cartilage in a defined region of interest was performed. A new finding of the study was that--although 2-year-old sheep is regarded as adult--tissue of the growth plate was still detected. Moreover, this study revealed that in the nucleus pulposus of the 2-year-old sheep notochordal cells are still existent, suggesting a complex remodelling of the nucleus pulposus in sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.