The nuclear and plastid genomes of the plant cell form a coevolving unit which in interspecific combinations can lead to genetic incompatibility of compartments even between closely related taxa. This phenomenon has been observed for instance in Atropa-Nicotiana cybrids. We have sequenced the plastid chromosome of Atropa belladonna (deadly nightshade), a circular DNA molecule of 156,688 bp, and compared it with the corresponding published sequence of its relative Nicotiana tabacum (tobacco) to understand how divergence at the level of this genome can contribute to nuclear-plastid incompatibilities and to speciation. It appears that (1) regulatory elements, i.e., promoters as well as translational and replicational signal elements, are well conserved between the two species; (2) genes--including introns--are even more highly conserved, with differences residing predominantly in regions of low functional importance; and (3) RNA editotypes differ between the two species, which makes this process an intriguing candidate for causing rapid reproductive isolation of populations.
Editing of plastid RNAs proceeds by C-to-U, in hornwort species also by extensive U-to-C, transitions, which predominantly lead to the restoration of codons for structurally and/or functionally important, conserved amino acid residues. So far, only one instance of editing outside coding regions has been reported - in the psbL/ psbF intergenic region of Ginkgo biloba. This site was proposed to have no functional importance. Here we present an evaluation of an editing site in the ndhI/ ndhG intergenic region in a related group of monocot plants. Efficient editing of this site, as well as the phylogenetic conservation of the resulting uridine residue, point at an important role for the sequence restored by editing. Two potential functions can be envisaged. (1) RNA secondary structure predictions suggest that the C-to-U conversion at this site can lead to a modified stem/loop structure of the ndhG 5' UTR, which could influence ndhG expression. (2) Alternatively, editing of the ndhI/ ndhG intergenic region may tag a so far unidentified small (12-codon) ORF, and lead to the restoration of a conserved phenylalanine codon. A screen with specific antibodies elicited against the putative peptide failed to detect such a peptide in chloroplast fractions. However, this failure may be attributable to its low and/or development-specific expression.
We describe the 159,443-bp [corrected] sequence of the plastid chromosome of Oenothera elata (evening primrose). The Oe. elata plastid chromosome represents type I of the five genetically distinguishable basic plastomes found in the subsection Euoenothera. The genus Oenothera provides an ideal system in which to address fundamental questions regarding the functional integration of the compartmentalised genetic system characteristic of the eukaryotic cell. Its highly developed taxonomy and genetics, together with a favourable combination of features in its genetic structure (interspecific fertility, stable heterozygous progeny, biparental transmission of organelles, and the phenomenon of complex heterozygosity), allow facile exchanges of nuclei, plastids and mitochondria, as well as individual chromosome pairs, between species. The resulting hybrids or cybrids are usually viable and fertile, but can display various forms of developmental disturbance.
We describe the 159,4443-bp sequence of the plastid chromosome of Oenothera elata (evening primrose). The Oe. elata plastid chromosome represents type I of the ®ve genetically distinguishable basic plastomes found in the subsection Euoenothera. The genus Oenothera provides an ideal system in which to address fundamental questions regarding the functional integration of the compartmentalised genetic system characteristic of the eukaryotic cell. Its highly developed taxonomy and genetics, together with a favourable combination of features in its genetic structure (interspeci®c fertility, stable heterozygous progeny, biparental transmission of organelles, and the phenomenon of complex heterozygosity), allow facile exchanges of nuclei, plastids and mitochondria, as well as individual chromosome pairs, between species. The resulting hybrids or cybrids are usually viable and fertile, but can display various forms of developmental disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.