Chiral recognition of two binaphthyl derivatives and three benzodiazepines were studied by use of polymeric surfactants in electrokinetic chromatography. Four specific dipeptide terminated (multichiral) micelle polymers were synthesized for this study. These include poly (sodium-N-undecanoyl-L-alanyl-leucinate)-(poly L-SUAL), poly (sodium-N-undecanoyl-L-valyl-leucinate) (poly L-SUVL), poly (sodium-N-undecanoyl-Lseryl-leucinate) (poly L-SUSL), and poly(sodium-N-undecanoyl-L-threonyl-leucinate) (poly L-SUTL). In addition to the chiral separation study, the physicochemical properties (critical micelle concentration and specific rotation) of each polymer were investigated. The molecular weights of the various dipeptide-terminated micelle polymers were determined using analytical ultracentrifugation. These dipeptide-terminated micelle polymers were designed to study the effect of the extra heteroatom at the polar head group of the micelle polymer (i.e., poly L-SUSL compared to poly L-SUAL and poly L-SUTL compared to poly L-SUVL) on the enantiomeric separation of the binaphthyl derivatives and benzodiazepines. The synergistic effect of three chiral centers (poly L-SUTL) provided improved resolution over that of two chiral centered dipeptide-terminated micelle polymer in the case of (+/-)-temazepam, (+/-)-oxazepam, (+/-)-binaphthol, and (+/-)-binaphthol phosphate. The chiral recognition mechanisms in these cases were additionally controlled by the presence of the extra heteroatom located on the polar head group of the micelle polymers.
Analytical ultracentrifugation is used for determination of the molecular weights and the sedimentation coefficients of poly(sodium undecanoyl-L-valinate) (PSUV) and poly(sodium undecanoyl-L-threoninate) (PSUT) at different temperatures. Plots of absorbance as a function of radius indicates that both PSUV and PSUT are highly monodispersed. A method for evaluating the partial specific volumes using density measurements is presented. The partial specific volumes of PSUV are slightly higher than those of PSUT. In addition, the temperature dependence of the retention factor in electrokinetic chromatography was used to estimate the enthalpy, the entropy, and the Gibbs free energy of the surfactant/analyte complexes. Five phenylthiohydantoin-DL-amino acids were separated and each enantiomeric pair was completely resolved. Comparison of the thermodynamic values obtained with PSUV vs PSUT using a van't Hoff relationship suggests that PSUT, with a less favorable free energy change (i.e., less negative delta (delta G)), generates a more positive entropy change, hence slightly less chiral resolution.
Chiral discrimination of enantiomers of 2-methyl-4-(2-oxo-2,3,3a,8b-tetrahydro-4H-indeno[1,2b]furan-3-yl-iden emethoxy)but-2-en-4-olide (commonly referred to as GR 24) by three polymeric chiral surfactants (PCS) is studied by use of chiral polymeric surfactant capillary electrophoresis (CPSCE). The CPSCE results indicate that the optical configurations of valine residues on the PCS backbone affect chiral resolution and elution order of GR24 stereoisomers. The L- and D-forms of poly(sodium N-undecanoyl valinate) provide baseline separation of all four enantiomers while the DL-form separates diastereomers of GR 24 (1). A model is presented rationalizing the migration behavior and chiral resolution of 1 in CPSCE. The actual configuration of the stereogenic centers of GR 24 and 3-[(2,5-dihydro-3-methyl-2-oxo-5-furanyl)oxo]-methylene-3,3a,6,6a-tetrah ydro-2H-cyclopenta[b]furan-2-one (GR 7) is established by a concerted application of high-resolution nuclear magnetic resonance spectroscopy and X-ray crystallography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.