We conducted triaxial friction experiments on the shallow Nankai Trough accretionary sediments at confining pressures, pore water pressures, temperatures close to their in situ conditions, and axial displacement rates (V axial ) changed stepwise among 0.1, 1, and 10 μm/s. The results revealed that their frictional properties change systematically according to the content of clay minerals, smectite in particular. The steady-state friction coefficient (μ ss ) at V axial = 1 μm/s decreases with increasing clay mineral content, shown in weight percent, from 0.82 for a sandstone sample (6 wt%), through 0.71 for a tuff sample (≈17 wt%), and 0.53 to 0.56 for siltstone samples (29 to 34 wt%), to 0.25 for a claystone sample (42 wt%). Slip-dependent frictional behavior changes accordingly from slip hardening for the sandstone sample, through quasi steady-state slip for the tuff and siltstone samples, to distinct slip weakening for the claystone sample. Although all samples exhibit velocity-strengthening behavior upon stepwise changes in sliding velocity, the ratio of the (a − b) value to the velocity dependence of steady-state friction (Δμ ss /ΔlnV sliding ) decreases with increasing clay mineral content, which implies that the friction component decreases while the flow component increases accordingly. Thus, faulting in the shallow Nankai Trough accretionary prism is likely controlled by the clay mineral content, in particular the smectite content, in the sediments as well as in the fault zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.