A canonical formalism of f (R)-type gravity is proposed, resolving the problem in the formalism of Buchbinder and Lyakhovich(BL). The new coordinates corresponding to the time derivatives of the metric are taken to be its Lie derivatives which is the same as in BL. The momenta canonically conjugate to them and Hamiltonian density are defined similarly to the formalism of Ostrogradski. It is shown that our method surely resolves the problem of BL.
We investigated the cosmology in a higher-curvature gravity where the dimensionality of spacetime gives rise to only quantitative difference, contrary to Einstein gravity. We found exponential type solutions for flat isotropic and homogeneous vacuum universe for the case in which the higher-curvature term in the Lagrangian density is quadratic in the scalar curvature, ξR 2 . The solutions are classified according to the sign of the cosmological constant, Λ, and the magnitude of Λξ. For these solutions 3-dimensional space has a specific feature in that the solutions are independent of the higher curvature term. For the universe filled with perfect fluid, numerical solutions are investigated for various values of the parameter ξ. Evolutions of the universes in different dimensionality of spacetime are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.