Lead-halide perovskites have attracted tremendous attention, initially for their performance in thin film photovoltaics, and more recently for a variety of remarkable optical properties. Defect tolerance through polaron formation within the ionic lattice is a key aspect of these materials. Polaron formation arises from the dynamical coupling of atomic fluctuations to electronic states. Measuring the properties of these fluctuations is therefore essential in light of potential optoelectronic applications. Here we apply two-dimensional electronic spectroscopy (2DES) to probe the timescale and amplitude of the electronic gap correlations in CsPbI3 perovskite nanocrystals via homogeneous lineshape dynamics. The 2DES data reveal irreversible, diffusive dynamics that are qualitatively inconsistent with the coherent dynamics in covalent solids such as CdSe quantum dots. In contrast, these dynamics are consistent with liquid-like structural dynamics on the 100 femtosecond timescale. These dynamics are assigned to the optical signature of polaron formation, the conceptual solid-state analogue of solvation.
The electronic structure of multiexcitons significantly impacts the performance of nanostructures in lasing and light-emitting applications. However, these multiexcitons remain poorly understood due to their complexity arising from many-body physics. Standard transient-absorption and photoluminescence spectroscopies are unable to unambiguously distinguish effects of sample inhomogeneity from exciton-biexciton interactions. Here, we exploit the energy and time resolution of two-dimensional electronic spectroscopy to access the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots. By removing effects of inhomogeneities, we show that the band-edge biexciton structure must consist of a discrete manifold of electronic states. Furthermore, the biexciton states within the manifold feature distinctive binding energies. Our findings have direct implications for optical gain thresholds and efficiency droop in light-emitting devices and provide experimental measures of many-body physics in nanostructures.
A technique has been developed for the localized treatment of laser damage sites in fused silica optics by CO2 laser melt-flow smoothing, by using a 50 to 125 microm diameter beam in a regime that avoids mass removal by ablation. A detailed calibration of the laser irradiance for the threshold ablation of craters was carried out for a range of beam diameters and pulses in the 20 micros to 200 ms range. The results agree with a thermal model that also provides estimates of the melt depth for the different irradiation conditions. Smoothing trials for glass melting at irradiance values just below the ablation threshold irradiance were conducted to determine the optimum conditions and limits for the smoothing process. The technique has been found to remove damage pits up to a depth of 0.5 microm, while the small melt depth associated with localized treatment limits the smoothing to a
We present a generic microcavity platform for cavity experiments on optically active nanostructures, such as quantum dots, nanocrystals, color centers, and carbon nanotubes. The cavity is of the Fabry-Pérot type with a planar back mirror and a miniature concave top mirror with radius of curvature ∼ 100 μm. Optical access is achieved by free beam coupling, allowing good mode-matching to the cavity mode. The cavity has a high Q-factor, reasonably small mode volume, open access, spatial and spectral tunability, and operates at cryogenic temperatures. Spectral and spatial tuning of the Purcell effect (weak coupling regime) on a single InGaAs quantum dot is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.