Aicardi-Goutieres syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3'-->5' exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P=.001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified.
Mutations in mitofusin 2 (MFN2) have been reported in Charcot-Marie-Tooth type 2 (CMT2) families. To study the distribution of mutations in MFN2 we screened 323 families and isolated patients with distinct CMT phenotypes. In 29 probands, we identified 22 distinct MFN2 mutations, and 14 of these mutations have not been reported before. All mutations were located in the cytoplasmic domains of the MFN2 protein. Patients presented with a classical but rather severe CMT phenotype, since 28% of them were wheelchair-dependent. Some had additional features as optic atrophy. Most patients had an early onset and severe disease status, whereas a smaller group experienced a later onset and milder disease course. Electrophysiological data showed in the majority of patients normal to slightly reduced nerve conduction velocities with often severely reduced amplitudes of the compound motor and sensory nerve action potentials. Examination of sural nerve specimens showed loss of large myelinated fibres and degenerative mitochondrial changes. In patients with a documented family history of CMT2 the frequency of MFN2 mutations was 33% indicating that MFN2 mutations are a major cause in this population.
Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities. Three subtypes have been described: TRPS I, caused by mutations in the TRPS1 gene on chromosome 8; TRPS II, a microdeletion syndrome affecting the TRPS1 and EXT1 genes; and TRPS III, a form with severe brachydactyly, due to short metacarpals, and severe short stature, but without exostoses. To investigate whether TRPS III is caused by TRPS1 mutations and to establish a genotype-phenotype correlation in TRPS, we performed extensive mutation analysis and evaluated the height and degree of brachydactyly in patients with TRPS I or TRPS III. We found 35 different mutations in 44 of 51 unrelated patients. The detection rate (86%) indicates that TRPS1 is the major locus for TRPS I and TRPS III. We did not find any mutation in the parents of sporadic patients or in apparently healthy relatives of familial patients, indicating complete penetrance of TRPS1 mutations. Evaluation of skeletal abnormalities of patients with TRPS1 mutations revealed a wide clinical spectrum. The phenotype was variable in unrelated, age- and sex-matched patients with identical mutations, as well as in families. Four of the five missense mutations alter the GATA DNA-binding zinc finger, and six of the seven unrelated patients with these mutations may be classified as having TRPS III. Our data indicate that TRPS III is at the severe end of the TRPS spectrum and that it is most often caused by a specific class of mutations in the TRPS1 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.