To investigate the effect of short-term training on Na(+)-K(+)-adenosine triphosphatase (ATPase) concentration in skeletal muscle and on plasma K+ homeostasis during exercise, 9 subjects performed cycle exercise for 2 h per day for 6 consecutive days at 65% of maximal aerobic power (VO2 max). Na(+)-K(+)-ATPase concentration determined from biopsies obtained from the vastus lateralis muscle using the [3H]ouabain-binding technique increased 13.6% (P < 0.05) as a result of the training (339 +/- 16 vs. 385 +/- 19 pmol/g wet wt, means +/- SE). Increases in Na(+)-K(+)-ATPase concentration were accompanied by a small but significant increase in VO2 max (3.36 +/- 0.16 vs. 3.58 +/- 0.13 l/min). The increase in arterialized plasma K+ concentration and plasma K+ content determined during continuous exercise at three different intensities (60, 79, and 94% VO2 max) was depressed (P < 0.05) following training. These results indicate that not only is training capable of inducing an upregulation in sarcolemmal Na(+)-K(+)-ATPase concentration in humans, but provided that the exercise is of sufficient intensity and duration, the upregulation can occur within the first week of training. Moreover, our findings are consistent with the notion that the increase in Na(+)-K(+)-ATPase pump concentration attenuates the loss of K+ from the working muscle.
Two membrane bound pumps in skeletal muscle, the sarcolemma Na+-K+ adenosine triphosphatase (ATPase) and the sarcoplasmic reticulum Ca2+-ATPase, provide for the maintenance of transmembrane ionic gradients necessary for excitation and activation of the myofibrillar apparatus. The rate at which the pumps are capable of establishing ionic homeostasis depends on the maximal activity of the enzyme and the potential of the metabolic pathways for supplying adenosine triphosphate (ATP). The activity of the Ca2+-ATPase appears to be expressed in a fibre type specific manner with both the amount of the enzyme and the isoform type related to the speed of contraction. In contrast, only minimal differences exist between slow-twitch and fast-twitch fibres in Na+-K+ ATPase activity. Evidence is accumulating that both active transport of Na+ and K+ across the sarcolemma and Ca2+-uptake by the sarcoplasmic reticulum may be impaired in vivo in a task specific manner resulting in loss of contractile function. In contrast to the Ca2+-ATPase, the Na+-K+ ATPase can be rapidly upregulated soon after the onset of a sustained pattern of activity. Similar programmes of activity result in a downregulation of Ca2+-ATPase but at a much later time point. The manner in which the metabolic pathways reorganize following chronic activity to meet the changes in ATP demand by the cation pumps and the degree to which these adaptations are compartmentalized is uncertain.
Extreme endurance training was used to investigate the adaptability of the rat diaphragm muscle fibers. During the final phase of the 14-wk training program, the animals were running for 240 min/day at an estimated requirement of 80% of pretraining maximal O2 consumption. Analysis of a sample of the costal diaphragm indicated that training resulted in a 34% reduction (P less than 0.05) in the percent distribution of type IIa fibers [27.7 +/- 1.1 vs. 18.3 +/- 2.6 (SE)] and a 15% increase (P less than 0.05) in the percent of type IIb fibers (40.0 +/- 1.2 vs. 46.1 +/- 2.4). No change (P greater than 0.05) was found in the distribution of the type I fibers (32.3 +/- 1.2 vs. 35.7 +/- 1.3). Oxidative potential as assessed with NADH-tetrazolium reductase and measured microphotometrically increased (P less than 0.05) by 19% in type I fibers but did not change in either the type IIa or type IIb fibers. No effect of training was found when a different oxidative marker, succinic dehydrogenase, was employed. Similarly glycolytic potential based on the activity of alpha-glycerophosphate dehydrogenase was not affected by training. Glycogen concentration was elevated by 60% (P less than 0.01) in type I fibers and 77% (P less than 0.01) in type IIb fibers with training but was not altered (P greater than 0.05) in type IIa fibers. Reductions (P less than 0.05) in fiber area ranging from 11 to 20% were observed in all fiber types as a result of training, whereas the number of capillaries per fiber remained static.(ABSTRACT TRUNCATED AT 250 WORDS)
Because studies into exercise-induced alterations in sarcoplasmic reticulum (SR) Ca2+ sequestration have produced conflicting reports, we have hypothesized that the differences in SR Ca(2+)-adenosinetriphosphatase (ATPase) activity and Ca2+ uptake in SR fractions observed in different studies are due to different SR isolation techniques. To investigate this possibility, rat white and red gastrocnemius muscles from control and run animals were studied by using two conventional isolation techniques to obtain a crude microsomal fraction and an isolated SR vesicle (SRV) fraction. Indexes of CM and SRV function were compared with measurements from whole muscle homogenate. Treadmill running to exhaustion did not alter SR protein yields, percent SR extraction, or basal or Ca(2+)-ATPase purification in either fraction. Ca(2+)-activated ATPase activity was not altered by exercise in any of the fractions examined, but Ca2+ uptake was reduced in the homogenates (9.48 +/- 1.4 to 6.90 +/- 0.8 nmol . mg-1.min-1) and SRV fractions (84.0 +/- 11.5 to 50.7 +/- 14.0 nmol . mg-1.min-1) from the red gastrocnemius at free Ca2+ concentrations of 600-700 nM. These data indicate that reductions in SR Ca2+ uptake are dissociated from changes in Ca(2+)-ATPase in vitro and occur only in a specific population of vesicles. The mechanisms underlying these alterations are not known but may involve a reduction in the number of Ca(2+)-ATPase enzymes or a selective sedimentation of damaged vesicles in the SRV fraction.
The influence of an intravenous infusion of glucose, lactate, or pyruvate on the work capacity and rates of glycogen depletion in the liver and hindlimb skeletal muscles of rats has been studied. Running time to exhaustion at a speed of 21 m/min on a treadmill at a +10 degrees incline was prolonged by glucose infusion but shortened by lactate or pyruvate infusions. Blood glucose concentrations were only lowered in the terminal stages of the exercise, whereas at this point lactate was elevated. Declines in liver and muscle glycogen concentrations were retarded by glucose infusion but accelerated by either lactate or pyruvate infusions. In all cases a marked depletion of both muscle and liver glycogen existed at the point of exhaustion. It is concluded from the lack of any major elevation of glucose, lactate, or pyruvate in the blood of the rats during running that these materials were taken up and oxidized, presumably by the working muscles. These observations suggest that skeletal muscle can take up large amounts of glucose and when it is supplied from an external source this can exert a glycogen sparing effect on the liver and working skeletal muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.