Adaptations in fat and carbohydrates metabolism after a prolonged endurance training program were examined using stable isotope tracers of glucose ([6,6-2H2]glucose), glycerol ([2H5]glycerol), and palmitate ([2H2]palmitate). Active, but untrained, males exercised on a cycle for 2 h/day [60% pretraining peak O2 consumption (VO2peak) = 44.3 +/- 2.4 ml.kg-1.min-1] for a total of 31 days. Three cycle tests (90 min at 60% pretraining VO2peak) were administered before training (PRE) and after 5 (5D) and 31 (31D) days of training. Exercise increased the rate of glucose production (Ra) and utilization (Rd) as well as the rate of lipolysis (glycerol Ra) and free fatty acid turnover (FFARa/Rd). At 5D, training induced a 10% (P < 0.05) increase in total fat oxidation because of an increase in intramuscular triglyceride oxidation (+63%, P < 0.05) and a decreased glycogen oxidation (-16%, P < 0.05). At 31D, total fat oxidation during exercise increased a further 58% (P < 0.01). The pattern of fat utilization during exercise at 31D showed a reduced reliance on plasma FFA oxidation (FFA Rd) and a greater dependence on oxidation of intramuscular triglyceride, which increased more than twofold (P < 0.001). In addition, glucose Ra and Rd were reduced at all time points during exercise at 31D compared with PRE and 5D. We conclude that long-term training induces a progressive increase in fat utilization mediated by a greater oxidation of fats from intramuscular sources and a reduction in glucose oxidation. Initial changes are present as early as 5D and occur before increases in muscle maximal mitochondrial enzyme activity.
We investigated the hypothesis that a program of prolonged endurance training, previously shown to decrease metabolic perturbations to acute exercise within 5 days of training, would result in greater metabolic adaptations after a longer training duration. Seven healthy male volunteers [O2 consumption = 3.52 +/- 0.20 (SE) l/min] engaged in a training program consisting of 2 h of cycle exercise at 59% of pretraining peak O2 consumption (VO2peak) 5-6 times/wk. Responses to a 90-min submaximal exercise challenge were assessed pretraining (PRE) and after 5 and 31 days of training. On the basis of biopsies obtained from the vastus lateralis muscle, it was found that, after 5 days of training, muscle lactate concentration, phosphocreatine (PCr) hydrolysis, and glycogen depletion were reduced vs. PRE (all P < 0.01). Further training (26 days) showed that, at 31 days, the reduction in PCr and the accumulation of muscle lactate was even less than at 5 days (P < 0.01). Muscle oxidative potential, estimated from the maximal activity of succinate dehydrogenase, was increased only after 31 days of training (+41%; P < 0.01). In addition, VO2peak was only increased (10%) by 31 days (P < 0.05). The results show that a period of short-term training results in many characteristic training adaptations but that these adaptations occurred before increases in mitochondrial potential. However, a further period of training resulted in further adaptations in muscle metabolism and muscle phosphorylation potential, which were linked to the increase in muscle mitochondrial capacity.
Alterations in skeletal muscle structure were investigated in 6 male subjects who underwent 40 days of progressive decompression in a hypobaric chamber simulating an ascent to the summit of Mount Everest. Needle biopsies were obtained from vastus lateralis of 5 subjects before and immediately after confinement in the chamber, and were examined for various structural and ultrastructural parameters. In addition, total muscle area was calculated in 6 subjects from CT scans of the thighs and upper arms. Muscle area at these sites was found to decrease significantly (by 13 and 15%) as a result of the hypobaric confinement. This was substantiated by significant (25%) decreases in cross sectional fibre areas of the Type I fibres and 26% decreases (non significant) in Type II fibre area. Capillary to fibre ratios remained unchanged following hypoxia as did capillary density although there was a trend (non significant) towards an increase in capillary density. There were no significant increases in mitochondrial volume density or other morphometric parameters. These data indicate that chronic, severe hypoxia on its own does not result in an increase in absolute muscle capillary number or a de novo synthesis of mitochondria. The trends toward an increase in capillary density and mitochondrial volume density were interpreted as being secondary occurrences in response to the pronounced muscle atrophy which occurred.
To determine whether the working muscle is able to sustain ATP homeostasis during a hypoxic insult and the mechanisms associated with energy metabolic adaptations during the acclimatization process, seven male subjects [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg] were given a prolonged exercise challenge (45 min) at sea level (SL), within 4 h after ascent to an altitude of 4,300 m (acute hypoxia, AH), and after 3 wk of sustained residence at 4,300 m (chronic hypoxia, CH). The prolonged cycle test conducted at the same absolute intensity and representing 51 +/- 1% of SL maximal aerobic power (VO2 max) and between 64 +/- 2 (AH) and 66 +/- 1% (CH) at altitude was performed without a reduction in ATP concentration in the working vastus lateralis regardless of condition. Compared with rest, exercise performed during AH resulted in a greater increase (P < 0.05) in muscle lactate concentration (5.11 +/- 0.68 to 22.3 +/- 6.1 mmol/kg dry wt) than exercise performed either at SL (5.88 +/- 0.85 to 11.5 +/- 3.1) or CH (5.99 +/- 0.88 to 12.4 +/- 2.1). These differences in lactate concentration have been shown to reflect differences in arterial lactate concentration and glycolysis (Brooks et al. J. Appl. Physiol. 71: 333-341, 1991). The reduction in glycolysis at least between AH and CH appears to be accompanied by a tighter metabolic control. During CH, free ADP was lower and the ATP-to-free ADP ratio was increased (P < 0.05) compared with AH.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.