Motivated essentially by the success of the applications of the Mittag-Leffler functions in many areas of science and engineering, the authors present in a unified manner, a detailed account or rather a brief survey of the Mittag-Leffler function, generalized Mittag-Leffler functions, Mittag-Leffler type functions, and their interesting and useful properties. Applications of Mittag-Leffler functions in certain areas of physical and applied sciences are also demonstrated. During the last two decades this function has come into prominence after about nine decades of its discovery by a Swedish Mathematician G.M. Mittag-Leffler, due its vast potential of its applications in solving the problems of physical, biological, engineering and earth sciences etc. In this survey paper, nearly all types of Mittag-Leffler type functions existing in the literature are presented. An attempt is made to present nearly an exhaustive list of references concerning the Mittag-Leffler functions to make the reader familiar with the present trend of research in Mittag-Leffler type functions and their applications.
In a recent paper, Saxena et al.[1] developed the solutions of three generalized fractional kinetic equations in terms of the Mittag-Leffler functions. The object of the present paper is to further derive the solution of further generalized fractional kinetic equations. The results are obtained in a compact form in terms of generalized Mittag-Leffler functions. Their relation to fundamental laws of physics is briefly discussed.
Abstract. The pathway model of Mathai (2005) is shown to be inferable from the maximization of a certain generalized entropy measure. This entropy is a variant of the generalized entropy of order α, considered in Mathai and Rathie (1975), and it is also associated with Shannon, Boltzmann-Gibbs, Rényi, Tsallis, and Havrda-Charvát entropies. The generalized entropy measure introduced here is also shown to have interesting statistical properties and it can be given probabilistic interpretations in terms of inaccuracy measure, expected value, and information content in a scheme. Particular cases of the pathway model are shown to be Tsallis statistics (Tsallis, 1988) and superstatistics introduced by Beck and Cohen (2003). The pathway model's connection to fractional calculus is illustrated by considering a fractional reaction equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.